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1 INTRODUCTION

The target resolution, parameter ¢stimation and clutter rejection capabilities of
a radar are determined by the ambiguity function associated with the transmitted
waveform [1-3]. The ambiguity function and its plot provide a qualitative assessment
of the suitability of different waveforms in meeting system requirements. Theory
and application of the ambiguity function to monostatic radars in a Gaussian noise
environment is fairly well understood [4]. A monostatic radar refers to a radar system
where the transmitter and the receiver are located at the same site. Over the past
several years there has been quite a bit of interest in the area of bistatic and
multistatic radars. This is primarily due to survivability considerations. In these
systems, the transmitters and the receivers are located at different sites in a va;riety of
configurations. The concept and application of ambiguity function for bistatic radars
has not been examined in detail. One of the main objectives of this study was to
investigate the concept of ambiguity function in the context of bistatic radars. Before
discussing the bistatic radar, it is useful to review the manner in which the ambiguity
function arises in a monostatic radar. In Chapter 2, we present the derivation of
ambiguity function from the basic principles of detection and estimation theory. In
Chapters 3 and 4, we present the formulation of ambiguity function for bistatic radars.
In Chapter 3, we describe the North-referenced coordinate system for the
representation of bistatic geometries. Procedures for transformation from the Global
Earth-centered coordinate system and the local north-east-down coordinate system to
the North-referenced coordinate system are also given. This will enable the use of our

methodology even when the measurements are obtained in these other coordinate




systems. In Chapter 4, we discuss in detail the effect of bistatic geometry on
ambiguity function analysis. Two examples are provided to illustrate the nature of
ambiguity function for a variety of system configurations. These examples consider
a Gaussian pulse and a waveform consisting of three rectangular pulses.

Most of the development of ambiguity function is based on the processing of
continuous waveforms at the receiver. However, modern radars employ digital signal
processing techniques in that the received signals are sampled prior to signal
processing. It is, therefore, imperative that the ambiguity function in terms of
discrete-time signals be analyzed in detail. In Chapters 5-8, we examine a number of
issues related to the ambiguity function based on sampled signals. In Chapters 5 and
6 we derive expressions for the continuous-time continuous-frequency ambiguity
function based on sampled signals. In Chapter 7, the relationship between the
discrete-time discrete-frequency and continuous-time continuous-frequency ambiguity
functions is established. Sampling rates required to avoid aliasing are also
determined. In Chapter 8, the reconstruction of the conventional ambiguity function
from the discrete-time discrete-frequency ambiguity function is discussed.

One of the important problems in the operation of a bistatic radar is that of
synchronization, i.e., the availability of the transmitted waveform replica at the
receiver. In the cooperative mode of operation, this availability is assumed. In
Chapter 4, ambiguity function analysis for a cooperative bistatic radar was carried out.
When the bistatic radar operates in a noncooperative mode, uncertainties exist m the
reference signal available at the receiver. In Chapter 9, this problem is briefly
considered and a signal model that includes these uncertainties is suggested. In
Chapter 10, a summary of the major contributions of this investigation is provided.

2




2 AMBIGUITY FUNCTION FOR MONOSTATIC RADARS

This chapter is devoted to the study and derivation of ambiguity functions for
monostatic radars. It is shown that the notion of ambiguity function comes up
naturally when dealing with the detection and parameter estimation problems. It is
typically derived assuming a slowly fluctuating point target. The model associated

with such a target is developed next.

2.1 Slowly fluctuating point target model

In the propagation direction of an electromagnetic pulse, assume a target has
scatterers distributed over the range interval (R, R;), as shown in Fig. 2-1. Let t;
denote the time instant at which the leading edge of the pulse reaches range R; where
i =1,2. We assume the time origin to correspond to the instant at which the leading
edge of the pulse appears at the transmitting antenna. If T denotes the time duration
of the transmitted pulse, we say that the target can be modeled as a point target

provided
t, -t <<T (2.1)

Assume the transmitted pulse contains n complete cycles of carrier. (Here,
"transmitted pulse” refers to a single finite-duration radar waveform which may
actually be composed of a number of simple subpulses.) It follows that the carrier

frequency is related to the pulse width by

(2.2)

]
=B

Since




Direction of

Propagation

-

<M

Target

Fig. 2-1 Illustration of target that extends in range from R, to R,.
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Af = ¢, (2.3)

where ) and c are the wavelength and the velocity of propagation, respectively, of the

transmitted pulse, it follows that

T:E:"_A. (2.4)
fc c

At time t, assume that the leading edge of the transmitted pulse arrives at range R.
Since

R o Ct, (2.5)

the time difference (t,-t,) can be expressed as

R, R (2.6)

C

Lt =

Thus, the inequality used to define a point target becomes

< <
C C

Ry R e Bb 2.7)

We conclude that a target can be modeled as a point target, that is, the return pulse

shape closely approximates the transmitted pulse, provided
R,-R, < < ni. (2.8)

It should be noted that, if the transmitted pulse consists of a sequence of several
subpulses, n still refers to the number of carrier cycles in one pulse. For convenience,

some people use the more restrictive condition
R, -R << (2.9)

in order to define a point target.




To examine the significance of the term "slowly fluctuating", assume that the

transmitted pulse is given by

si®) = v2 E, AQ®) cos[w t + $(t)]

. (2.10)
= V2 Re{/E, (e’
= V2 Re{/E, fe')

where Re {*} denotes the real part operation,
2.11
w, = 2=nf, @10

and

(2.12)

) = A(teit®

is the complex envelope of the transmitted pulse. Let the complex envelope be

normalized such that
[~ EoP -1 (2.13)

Then the energy of the transmitted signal is equal to E,
For a monostatic radar, assume that a point target is located at range R, with
radial velocity v,. The geometry is indicated in Fig. 2-2. Let the point target consist

of a rough surface with K scatterers. The received waveform due to the reflection

from the it" scatterer is

s, ® = V2 Re { ‘/Et gieje‘ f(t—t.)ejw"‘(t-r')ej“““"') } (2.14)

where g, and 6, denote the attenuation and phase shift, respectively, incurred in the
reflection process, 1, = 2R,/c denotes the round-trip time delay and

6




Point Target

Colocated transmitter and receiver

Fig. 2-2 Geometry for a monostatic radar.
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op = ( ﬁ)wc (2.15)

is the shift in the carrier frequency due to the radial velocity of the target. wp, is
called the Doppler shift. Summing the returns from the K scatterers, the total

received waveform is

K

SR(t) = Z Sg(t)

i=1
K o
= 2Re{‘/§t[§ gie’e‘

. o (t-t) (2.16)

=2 Re { JE B I (t;r.)ej%'(t_t')ej”°(t—")}

where the operations of summation and real part have been interchanged and

k
Y 5. (2.17)
i=1

K
b= Y 8 e’
i=1 i=
Assuming that the complex random numbers g, are statistically independent and that
K is sufficiently large, we can use a central limit theorem argument to conclude that
B = bI + ij = Iﬁlejes (2.18)

is a zero-mean complex Gaussian random variable. It follows that

lsl - m (2.19)

is a Rayleigh distributed random variable and

6 - tan-! %g (2.20)
I

is a uniformly distributed random variable. Absorbing the constant factors

8




Jep % “Jw_t .
e D, and e T, (2 21)
into the phase component of b, the total received signal becomes
- i ©
s2® = V2 Re{/E, b Fe-r)e™™ & (2.22)

The point target is defined to be slowly fluctuating if b can be assumed to be

constant while the target is illuminated by the transmitted pulse of duration T.
Having defined what is meant by a slowly fluctuating point target, we now
show how the ambiguity function arises in the radar detection problem.

2.2 The Radar Detection Problem

Let f(t) denote the complex envelope of the transmitted radar pulse. Assume

that f(t) is zero outside the interval 0 < t < T. Given the complex envelope of the

received waveform over the interval 1y <t < 7; + T, we are interested in determining
whether a slowly fluctuating point target, at range R with radial velocity v, is located

at the point

R v (2.23)

(tq =
H c H c

in the delay - Doppler plane. In the absence of a target, the complex envelope of the

received waveform is assumed to be
M =at), vy sty + T (2.24)

where ii(t) denotes the complex envelope of a Gaussian white noise process. On the

other hand, if a slowly fluctuating point target is located at the point (t,wp ) in the




delay - Doppler plane, the complex envelope of the received waveform is

#t) = ‘/Et b ié(t—tﬂ)ej“"’“t +hit), tus t <1y + T (2.25)
Hence, given the two hypotheses
H, : &) = @) | (2.26)

TSt<ty+T

H, : i) = /B, b fa-t,0e" ™ sy,

we wish to determine the Neyman-Pearson receiver, i.e., the receiver that maximizes
the detection probability for a specified false alarm probability, for detecting a slowly
fluctuating point target at the hypothesized point (1, @p) in the delay-Doppler plane.

For this purpose, it is convenient to expand ¥(t) in a Karhunen-Loeve expansion
as given by
[+ -]

i)=Y f o), tyststy+T
i=1

(2.27)

Because b is a complex Gaussian random variable and fi(t) is a white complex

Gaussian random process, the coefficients
5= 7w &) (2.28)
|

are statistically independent complex Gaussian random variables. In addition, since

the noise is white, the basis functions q~)i(t) can be chosen from any set which is

complete and orthonormal over the interval Ty <t < 14 + T. For convenience, let the

first basis function be

10




$,0 = t~”(t—‘rH)ejm°Ht ) (2.29)

The first coefficient in the expansion of i(t) is then

*u

Tyt = -jo )i} ‘:
fo= [ ) Fa-rge” F dt = {flE‘tB s :é (2.30)

where

8 = [T GOF(-re At 2.31)

H
is the first coefficient in the Karhunen-Loeve expansion of the complex white noise

process. Let

E [|8,]%] = N, and E[|B]?] = 20}. (2.32)

It follows that the conditional probability density functions of , are given by

: 1 R,F (2.33)
o T e— e o
Py, 1, R4 [Ho) s xp{ N
and
_ 1 Iﬁ '2
pEIIHI(R1IH1) =-——5——exp S L O (2.34)
7 (20, E, +Np) 20{E, +N,

2.3 Derivation Based on Sufficient Statistics

The remaining orthonormal functions in the basis set can be selected in any

convenient manner. Fori> 1, the ith coefficient in the Karhunen-Loeve expansion of f(t)

11




is

- {ﬁi :Hy

f, =1 ,
Py cH
where fi, is the ith coefficient in the Karhunen-Loeve expansion of fi(t). Since fi(t) is

a complex Gaussian white noise process, ii; for i > 1 is statistically independent of i,.

Also, by assumption, f, is statistically independent of b. Thus, f, for i > 1 contains

no information either about the target return or the noise coefficient f,. It follows

that ¥ is a sufficient statistic. The log likelihood ratio is given by

No

. 29, R (2.36)
20,E,+N,

Ny(204E, +No)

In Prl|H,(I:21|H1) m
P 1, R, [Hyp)

Because the constants can be combined with the threshold, the Neyman-Pearson

receiver performs the likelihood ratio test

Hl

L o>
|R1 |2 oy (2.37)

H,

where the threshold vy is selected so as to achieve a specified false alarm probability.

The above test maximizes the detection probability under a false alarm

probability constraint assuming that a slowly fluctuating point target, if present, is

located at the point (1, mDH) in the delay - Doppler plane. However, the target may

actually be located at the point (1, , wp,). The complex envelope of the received

waveform is then

12




#) = JE, b Kt-1e"+ 5. (2.38)
Hence,

;= TTrOE E-te 7 dt

1 g

= JEb ft'“*T ft-c)F t-e’ ™ PP dt (2.39)

o [T A (-rpe " at

H

It follows that

- Fd tqtT = - j( -
£ = BB R e R (2.40)
+ terms involving fi(t).

Ignoring the noise terms and the multiplicative factor E,|b|?, the ambiguity function
is defined to be
B(TyTpWp ;@p) = | f 'H+Tf(t—‘t.)f '(t-rH)ej(%'—%“)'dtP. (2.41)
a “H
Because f(t-t,) is zero outside the interval Ty <t < Ty + T, the range of integration

may be extended from - « to + «. Hence, the ambiguity function is commonly

expressed as
8(typ0p,0p) = I f-t)E -t ™ )2 . (2.42)

It is convenient to express the ambiguity function in terms of the differences

13




v/ = 1,-1, and op = (wp,-wp )- (2.43)

This results in
0(T5Tw®p 0p) = | f : f(t—‘rH—‘r’)f‘(t—tH)ej""/’(,t"ﬂ"ﬂ)dt|2, (2.44)
Moving the factor
B CYVL (2.45)
outside of the integral and noting that
i'prey Y (2.46)

le

we have
o» o~ ~ ml -t
e(TH’ Ta, QDH’ (I)D.) = lf_. f(t“l'H“t'/)f (t"TH)ej n H)&‘Z (247)
A shift of the time origin results if t-t, is replaced by t. This gives

Bt Tp0p0p) = B(7', wp)

/ (2.48)
= | f _: ft-HE (e Pdt 2.

" A symmetrical form of the ambiguity function is obtained by a further shift of the

time origin. Replacing t by t + t'/2 gives

/

- . I X
6(‘:’,(.)1/)) = If_.f(t__;_)f (t+%) e “ptt3 dtlz. (2.49)

1 2
Moving the factor ¢’ >? outside of the integral and noting that

14




/

Iejwl/)%lz =1, (2.50)
the symmetrical form of the ambiguity function reduces to
o ! . / /
Bzhop) = |[ f6-2)F 2" (2.51)

The effect of changing over to variables T and wyp’ is to shift the target to the origin

of the 7/,wp’ plane. In other words, when U = wyp’ =0, then

Ty = T, and wp = @p - (2.52)

Clearly, to minimize the likelihood that a target will be detected at the point‘cH,wDH)

when it is actually located at the point (t, wp,), it is desirable that o(t’, o’p) be an
impulse located at the origin. This ideal ambiguity function cannot be achieved in
practice.

2.4 Alternative Derivation

It is instructive to rederive the ambiguity function by an alternative approach
to the detection problem. In the previous development, use was made of the fact that
the first coefficient in the Karhunen-Loeve expansion of the complex envelope of the
received signal is a sufficient statistic. Even so, the solution could have proceeded by

considering all of the coefficients in the expansion

i) =Y f §®, g st < 1 +T. (2.53)
i=1

This latter approach is discussed next.

As before, the two hypotheses are assumed to be

15




H, : f(t) =A(t)
CE(t) =5(t) +a@) THStS TR Y T (2.54)

ae

where
50) = (B, b ft-re’™ . (2.55)

Recalling that E[ | b |? ] = 26%, , the covariance function of 5(t) is given by

Jopy(t-) (2.56)

K tw = EE®S @] = E, ft-rpf ‘@-te

where

E =207, . (2.57)

The complex envelope of the Gaussian white noise process is assumed to be

statistically independent of 3(t) with covariance function

K,(tw = E[E®A W] = N,3(t-u). (2.58)

Keeping all of the terms in the Karhunen-Loeve expansion of f(t), the sufficient

statistic for the Neyman-Pearson receiver is given by [4]

tg+T

S Y 2.59
0= f f #*(Oh(tu)i(uw)dtdu (2.59)

0 Ty
where h(t,u) is the solution to the integral equation

T
Noﬁ (tu) + f h(t,z) I~(i (zu)dz = Ks (tw), tystus<ty+T.

H

(2.60)

Substituting for the signal covariance function, the integral equation becomes

16
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ytT
~ ~ = - jop, (2-)
Nohtw) + [ B2 Bfa-tpf (u-rye ™ dz 2.61)
'CH ’
- Eft-rf @-te ™, rustusty T
By inspection, the solution is seen to be

_ E, . - opgt-

Bt = —— Ht-tp F-te ™ (2.62)
Er+N0

where use is made of the fact that f(t) is normalized to have unit energy such that

ytT

[ fa-tpPdz = 1. (2.63)

Substitution of the expression for h(t,u) into the sufficient statistic results in

gtT -
E - - j -u;
¢=L f [#0 =——fepf -te’ ™ “H(u)dtdu
N0 iy Er+N0 2
— 1H+T . (2'64)
S f(OF "(t-t, e PRdt
NoE,+Np) | =4
E .
=—
No(E,+No)

where F, is the first coefficient in the Karhunen-Loeve expansion of #(t) as defined

previously. Because the multiplicative constant can be combined with the threshold,
the above result is consistent with the likelihood ratio test derived in the previous

approach. The second approach was discussed because it proves to be more useful

17




when considering sampled data.

2.5 The Parameter Estimation Problem

The ambiguity function is also related to the parameter estimation problem for
a slowly fluctuating point target where the complex envelope of the received signal

is assumed to be of the form

} Joo t (2.65)
i) = E bit-ry) e ™ +i), tyststy+T

and 1 and wp_ are unknown nonrandom parameters that we wish to estimate.

Because the unknown parameters are nonrandom, we use a maximum

likelihood estimation procedure. The maximum likelihood estimates are those values

of 1ty and @p, for which the likelihood function is a maximum. The derivation of the

likelihood function is similar to that of the likelihood ratio. The first step is to make

a Karhunen-Loeve expansion for (t) assuming T, and wp,_ are known. This means

that we must choose basis functions that are conditionally dependent on 1, and @p, -

We write
i) = Y f(tpwp 9) d(t:t00p D Ty S ts Ty +T (2.66)
i=1
where
f = [T 50t dt (2.67)
f(rpop) = [ O Erpop) &
TH

For convenience, let the first basis function be

18




b)) = He-re™ 269)

The first coefficient in the expansion of #(t) is then

(2.69)
fl(TH'“’D,) = \/E_T b+ ﬁx("mmn,) |

where

T oz _ 2.7
fiy(ry0p) = L: T At F-te Pt @70

is the first coefficient in the Karhunen-Loeve expansion of the complex white noise

process assuming Ty and wp, are given. Because b is a complex Gaussian random

variable and fi(t) is a complex Gaussian random process, the coefficients I, are
statistically independent complex Gaussian random variables. As before, let
EL|f, '] = N, and E[[6]") = 20}, @70
The conditional probability density function of
f(tpop) (2.72)
is then given by

_lkl(“m“’nﬂ)]z
= 1 204E, N,
P: (x o, R(Tpop)|tgpop) = ——— e o .
imongtaopg 1R DH) ? DH) n(20,2,Et+N0)

(2.73)

The remaining orthonormal functions in the basis set can be selected in any

convenient manner. Fori> 1, the ith coefficient in the Karhunen-Loeve expansion of #(t)

19




is

fi(rH,wDH) = ﬁi(tﬂ,wnﬂ), i>1 (2.74)
where (1, mDH) is the ith coefficient in the Karhunen-Loeve expansion of fi(t)
assuming 1ty and wp, are known. Because the coefficients fi;(ty, ©p, ), fori> 1, depend
only on the noise and are statistically independent of fi,(ty, mDH), they contain no
useful information for estimating t,; and wp - We conclude that fl(IH,coDH) is a

sufficient statistic. Since the conditional probability density function
Ps (v pop, ,Ql'm%u(ﬁl("w"’nﬂ) |rH,wDH) (2.75)

is maximized by maximimizing the exponent, it follows that the maximum likelihood
estimates of 7; and wp_ are those values of 1,; and Wp, for which
Ryrgop)? = [ 7 1) Ft-re " ™atf? (2.76)
: ¢

is a maximum.

As in the detection problem, the ambiguity function is defined by ignoring

those terms in |R1(1H,mD )|* that involve fi(t). If the actual values of delay and
Doppler frequency are 7, and o, the ambiguity function is found to be

8(rgT0p,0p) = |f Ft- )F (-t e’ ™ PP e 2 2.77)

which is identical to that obtained in the detection problem. Thus, introducing the
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change of variables

v/ = 1,14 and 0’} = (wp ~wp ), (2.78)

the ambiguity function can again be written in the symmetrical form

o(c\op) = [[” f(t—%/) ?‘(u%l) eonidt 2. 2.79)

Clearly, to minimize the maximum likelihood estimation errors, it is desirable that
8(t",0'p) be an impulse located at the origin. As pointed out previously, this ideal
ambiguity function cannot be achieved in practice.

As opposed to simply defining the ambiguity function, as is done in most
references, we have shown that the ambiguity function arises naturally in both the

detection and parameter estimation problems. In both applications, it is desirable to
choose a waveform for f(t) such that the shape of the ambiguity function in its

symmetrical form approximates an impulse located at the origin. Examples and

properties of the ambiguity function are well documented and are not repeated here.
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3 COORDINATE SYSTEMS

Much of the radar systems analysis employs the Global, Earth-centered
coordinate system using the earth as the reference. This three-dimensional coordinate
system was also employed in the previous Rome Laboratory efforts on bistatic radar.
However, this coordinate system is quite cumbersome and unnecessarily complex for
expressing the bistatic configuration. Jackson [5] presented the North-referenced
coordinate system to describe the bistatic radar geometry. It is a two-dimensional
system and is fairly convenient to use. Willis [6] further elaborated on this system
and has employed it extensively to analyze the bistatic radar system and to obtain
many useful results. For this reason, we also employ the North-referenced coordinate
system for the ambiguity function analysis for the bistatic radar. In this section, both
of these coordinate systems are introduced. The procedure for transformation from
the Global, Earth-centered coordinate system to the North-referenced coordinate
system is derived. This will enable the use of our results if the measurements are
provided in the Global, Earth-centered coordinate system.

Another common measurement practice is to use a local coordinate system. An
example of such a coordinate system is the north-east-down coordinate system. We
present this coordinate system and the procedure for converting the measurements
provided in this system to the North-referenced system. If any other coordinate
systems are employed for measurements, appropriate coordinate conversion
procedures can be developed so that our results can be used.

3.1 North-referenced Coordinate System

This is a two-dimensional coordinate system confined to the bistatic plane
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Fig. 3-1: North-referenced Coordinate System
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formed by the transmitter T,, the receiver R, and the target Tgt. Figure 3-1 shows the
coordinate system and its parameters. This coordinate system is represented as in
maps with a north-up orientation. The distance between the transmitter and the
receiver is the baseline range, or simply baseline and is denoted by L. The receiver
is at the eastern end and the transmitter is at the western end of the baseline. The
triangle formed by the transmitter, the receiver and the target is called the bistatic
triangle. Transmitter’s look angle 8; and receiver’s look angle 6 are measured from

the north of the coordinate system, positive clockwise. Also, the angles 6; and 6; are

restricted to the interval [—%, 3?”]. The bistatic angle p is the angle between the

transmitter and the receiver in the bistatic triangle with the target as the vertex. Itis
given by B = 6 - 6;. Using the definition and the restriction on the values 6; and 6y,
the bistatic angle is positive and in the interval [0, 1] when the target is to the north
of the baseline, and is negative and in the interval [-r, 0] when the target is to the
south of the baseline. The line that bisects the bistatic angle is called the bistatic
bisector. The region to the north of the baseline is called the northern hemisphere,
and likewise, the southern hemisphere is the region to the south of the baseline. In
general, bistatic radar operation and performance in the northern and southern
hemispheres are equivalent for symmetric geometries. The range from the transmitter
to the target is denoted by R;. The range from the receiver to the target is denoted
by Rg. For a bistatic radar, the target range is measured in terms of the total range,
or range sum, given by R = Rr + Rg. Note that in bistatic radar a constant range
contour can be described by an ellipse. This is defined as the locus of points for
which R; + R is constant. For a monostatic radar, the constant range contour reduces

24




to a circle because in this case, Ry = Rz. An example of constant range or constant
delay contours is shown in Fig. 3-2. Also, constant signal-to-noise ratio contours can
be described in terms of ovals of Cassini. These ovals are the loci of points for which
the product R; Ry is constant. Typical ovals of Cassini are shown in Fig. 3-3. Again,
for a monostatic radar, the constant SNR contour reduces to a circle. Note that in
bistatic radars, these ovals of Cassini define three distinct operating regions: (I)
receiver-centered region, the small oval around the receiver as given in Fig. 3-3; (II)
transmitter-centered region, the small oval arround the transmitter; and (III)
receiver/transmitter-centered region, called the cosite region, any of the regions
surrounding both the transmitter and the receiver. As given in [6], the receiver
centered region can be used for applications such as passive situation awareness
where one is interested in the detection of a target around a passive receiver. The
transmitter-centered region can be used with a non-cooperative transmitter. The cosite
region can be used for medium range air defense and éatellite or missile tracking.

The bistatic radar geometry can be defined in terms of four parameters, namely,
0;, 0z, L and R. However, it is sufficient to know any three of these, and the fourth
one can be obtained from the knowledge about the other three. Also, Ry and Rg can
be determined. In the following, relations among the parameters are developed.
Three cases are considered.

Case I: 6;, R and L are specified.

In this case, we assume that the total range R, baseline L and the receiver’s look
angle, or the angle of arrival of the target return, 6y, are available. Applying the law

of cosines to the bistatic triangle, we have
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Rr+RR=constant.

Fig. 3-2: Concentric Ellipses (Constant Range Contours)
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Fig. 3-3: Contours of Constant Signal-to-Noise Ratios (Ovals of Cassini)
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R7 = R} + L? - 2R;L cos (90° + 6y)
By definition, R; = R - Rg. Then,
R.? = (R - Rp)* = R? - 2RR; + Rg
Combining (3.1) and (3.2), we have
R? - 2RR; + Rg? = Rg? + L? - 2R; L cos (90°+6g)

Rearranging terms of the two sides of (3.3), we obtain

R2_L2
Rg =
2(R +Lsin6y)

From (3.1),
R; = [Ry? + L? + 2R, Lsin6,]*

Using (3.4), we may obtain another expression for Ry

_R.R - R2+L2+2RLsin6,
Ry = RRy = 2(R +Lsin6,)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5

(3.6)

Now, the distance between the target and both the transmitter and the receiver have

been obtained.
Again, using the law of cosines, it can be written that
RRZ = RTZ + Lz - 2RTL cOoSs (900 d eT)

= (R - Rk)z + Lz - 2(R - RR)LSineT

= R2 - ZRRR + RRZ + Lz - 2(R - RR)LsineT

Rearranging the two sides of (3.7), we have
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_ R%+L?-2RRy

sinf, = (3.8)
2R-Ry)L
Substituting (3.4) into (3.8), we have
gt BB x B, <= (3.9a)
®?+L?)+ZRLsinBy 2 2
0, - |
2,12 +
n-sin”t ST ehp<E (3.9b)

®?+L)+2RLsin6y 2 2

x n

where -2 < sin’!(9) < > Note that (3.9a) represents the case when the target is in the

n

northern hemisphere, i.e., - —;— s8p <. The operation sin™() yields 8; which is also

in the northern hemisphere. However, when the target is in the southern hemisphere,

ie., 12'- <0< 1;—, B, is defined as in (3.9b) so that the resulting 6; also corresponds

to the southern hemisphere.
Thus, using (3.4), (3.6) and (3.9), the bistatic triangle is specified and the target’s
position is determined with the measurements of 6z, R and L.
Case II: 6;, R and L are specified
In this case, the total range R, baseline L and the transmitter’s look angle 0; are
assumed to be given. Applying the law of cosines to the bistatic triangle, we have
R;® = Ry? + L? - 2R{L cos (90° - 6,) (3.10)
By definition Rg = R - Ry. Then
Rg? = (R - Rp)? = R* - 2RR; + Ry (3.11)
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Combining (3.10) and (3.11),
R?- 2RR; + Ry = Rf* + L* - 2R; L cos (90° - 8;) (3.12)

Rearranging terms of the two sides of (3.12), we obtain

212
R, = L (3.13)
2(R-Lsin6,)
From (3.10),
RR = [l"rz + L2 - ZRTLSin.eTPé (3.14)

Alternatively, using (3.13), we may obtain another expression for Ry,

_ R*+L2-2RLsin6,

"R - 15
faRoK 2(R-Lsin6) (3.15)

Thus, the distances between the target and both the transmitter and the receiver have
been obtained.
Next, using the law of cosines, it is also found that
R;* = Rg? + L? - 2RgL cos (90° + 6;)
= (R - Ry)?* + L?- 2(R - Rp)L cos (90° + 6)
= R?- 2RR; + R;* + L* + 2(R - R;) Lsin6, (3.16)

Rearranging the two sides of (3.16), we have

D272
2RR, R*-L” (3.17)

0 = SRRL

Substituting (3.13) into (3.17), we have
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2+L%sin6,-2RL
gin-! (R*+L%)sin8, , -Tce <k (3.18a)
{ R2+L?-2RLsin@, 2 2
Oy = |
2+L%)sin6,-2RL
T e LD W1 (3.18b)

R2+L2-2RLsin®;, 2 2
As before, the cases of northern and southern hemispheres are treated separately in
(3.18a) and (3.18b) respectively.

Hence, using ’(3.13), (3.15) and (3.18), the bistatic triangle is specified and
target’s position is determined with the measurements 6,, R and L.

Case III: 8;, 6; and R are specified.

In tlus case, the angle measurements 6, and 6, and the range measurement R
are assumed to be available. Consider Fig. 3-4. It is found that, in the bistatic
triangle,

Ry cos 8; = Ry cos 6 (3.19)
Substituting R; = R - Ry into (3.19),
(R - Ry) cos 01 = Ry, cos Oy (3.20)

Rearranging the two sides of (3.20), we have

R e
R, = _nesUr (3.21)
cos B +cos 0,

and

R, -RR, = _Rosb (3.22)

" cos 0, +cos 0,

31




Tgt

Fig. 3-4: Bistatic triangle and associated parameters
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In the bistatic triangle, it is also true that
L = RT Sin 9-1- - RR Sin eR (3-23)
Substituting (3.21) and (3.22) for Ry and Ry, respectively, into (3.23), we have

_ Rsin(6;-6y)

- s (3.24)
cos 6,+cosBp

Now, with (3.21), (3.22) and (3.24), and the given angle measurements, the bistatic
triangle is totally specified.
3.2 Global, Earth-centered Coordinate System (DOD World Geodetic System)

This is a three-dimensional, right-handed rectangular coordinate system, with
its origin set at the center of the earth, as shown in Figure 3-5. The z-axis points to
the true north of the earth, and the x-y plane coﬁtains the equator. The x-axis passes
through the zero (Greenwich) meridian. Position of an object is often provided in this
coordinate system. Sometimes it is more convenient to specify the position of an
object in terms of its geographic coordinates, i.e., the position is given in terms of its
latitude ), longitude L and height h above the mean sea level. These can be converted
to the Global, Earth-centered coordinate system as follows:

X = (R, +h) cos A cos L

Y =(R, + h) cos A sinL

Z=(R, +h)sinA
where R, is the radius of the earth.

As indicated earlier, the North-referenced coordinate system is a convenient
representation for the bistatic geometry and has been employed in this work. Next,

we focus on the conversion of data presented in the Global, Earth-centered coordinate
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Fig. 3-5: Global, Earth-centered Coordinate System
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system to the North-referenced coordinate system.

The measurements of the total range and baseline are readily available, and are
independent of the coordinate system in use. Therefore, their conversion need not be
considered here. On the other hand, the angles 6; and 65 in the bistatic plane are not
available as direct radar measurements, when Global, Earth-centered coordinate
system is used. The calculations of 8; and 6;, using the data given in the Global,

Earth-centered coordinate system, are straightforward. Let us consider the system

shown in Fig. 3-6. Using the position vectors of the transmitter B, =Xp Yo Z)", the

receiver B, = (X, Yy, Z,)T, and the target ?m = Kpge Yogo Z,)", the following

vectors can be formed:

Loy = BpBry = Xy Xpgy Y-V Zp-Zy)' (3.25)
L = ByPry = KXy Yo-Yop Zy-Zy)'T (3.26)

and
r'B = p’l'_?l = (x'r_xm YT_YR: ZT—Zn)T (3.27)

Then, from the definition of the inner product, the angle between L. and L, is given

by

1 __irr__’:_g_ (3.28)
[l - Lyl

and the angle between L ; and (-Lp) is given by
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Fig. 3-6 : Geometry for the conversion of the Global, earth-centered coordinate system
to the North-referenced coordinate system
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= cos”! r‘l’l‘ ) (_I:B>
Lol - Tgl

(3.29)

where A - B is the inner product of vectors A and B and |A| is the magnitude of the

vector A. Since, 0 < cos™'() < =, the angles 6, and 6, in the bistatic plane, can be

obtained as

T
—+Y,

2

when target is in the northern hemisphere

when target is in the southern hemisphere

when target is in the northern hemisphere

when target is in the southern hemisphere

(3.30)

(3.31)

Using the above procedure, measurements given in the Global earth-centered

coordinate system can be converted to the North-referenced system.

3.3 Local Vertical Coordinate System

Another typical situation encountered in practice is that the measurements are

taken in a local vertical coordinate system centered at the receiver site. This local

coordinate system is usually specified with the receiver’s local vertical as the z-axis,

and the local horizontal as the x-y plane, in which the x-axis points in a convenient

direction, such as towards the North pole and the y-axis points towards east. This

configuration is known as the north-east-down coordinate system. In this setup, the

target angle of arrival is measured in terms of the azimuth angle Ag, positive
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clockwise from the x-axis, and the elevation angle Ez, measured from the receiver’s
nadir. Note that the measurements of the total range and the baseline are

independent of the coordinate system in use. Therefore, their conversion need not be

considered. In the following, we consider the derivation of 8;. The angle 6, can be

obtained using the formula given in Section 3.1. Assume that the receiver has an
estimate of the transmitter’s angular position Agr and Eg;. Also assume that the target
and transmitter are both above the local horizontal, i.e., the x-y plane. Other
situations will be considered later. Consider the geometry shown in Figure 3-7 (case
D. Note that Tgt, K and M form a plane parallel to the local horizontal where K and
M denote the intersections of this plane with the z-axis and the baseline respectively.

Using the cosine law in the triangle Tgt K M, we have

TgtM2=TgiK?2+KM? -2 Tgt K KM cos(Ay-Agy) (3.32)
Next consider the bistatic plane, i.e., the plane formed by T,, Tgt and R,. Using the

cosine law for the triangle with vertices M, Tgt and R, in the bistatic plane, we have

TgtM * = TgtR, * + RM ? - 2 TgtR, R M cos(90°+8y) (3.33)

=TgR, 2 +RM 2 + 2 TgtR_ R M sin 6

But
TgiK = TR, cos(By-90") = TgiR, sink D
R,K = TgtR, sin(E;-90" = RM sin(E;,-90°) (3.35)

and
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Note: 1 Ty is out of the x-z plane, towards the viewer.
2 Tgt is out of the x-z plane, away from the viewer.

3 N is the north of the North-referenced coordinate system

Fig. 3-7: Geometry for the conversion of the local vertical coordinate system to
the North-referenced coordinate system for case I
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KM = R M cos(E,,-90% = R M sinE,, (3.36)

From (3.35),

R.M = TgtR, sin(E; -90°)[sin(Ey;-909]

(3.37)
—__ (cos
"R o]
cosEpr
Substituting (3.37) into (3.36), we have
—— —— [ cosEp
- : (3.38)
KM - T, [mn] sinEyy
Substituting (3.34) and (3.38) into (3.32), we have
2
*osFar (3.39)
— . cosEp ) .
- 2 TgtR, &mEn'a;E;; sinEp; cos(Ag-Agy)

Substituting (3.37) into (3.33), we have

TgtM 2 = TgIR_ 2 +ﬁ2[:§:)2 +2T—gt“§2[°°sEﬂ)sinen (3.40)

T cosEp,

Equating the right-hand sides of (3.39) and (3.40), and then dividing by TgtR, 2, we

have
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= e R
=1+ COSER : +2 _cg_s_EE smen ‘
cosEpy cosEgy

Rearranging the two sides of (3.41), we arrive at

- sinBy = [cos(Ag-App)sinEysinEpy + cosEycosEyq] (3.42)
Note that, when A;-A,. > 0, the target is in the northern hemisphere; and when

Ag-Agr <0, the target is in the southern hemisphere. Thus,

-sin[cos(Ag-Agp)sin Eg sin Ez; + cos Eg cos Eggl, when Ag-Agr >0 (3.43a)
0 = { | |
n + sin[cos(Ag-Agp)sin Eg sin Eg; + cos Eg cos Eggl, when Ag-Agr <0 (3.43b)

Next consider the case where, as shown in Fig. 3-8, both the target and the
transmitter are below the local horizontal, i.e., below the x-y plane (case II).
Compared with the prior situation, it is obvious that the derivation of 6y can be
carried out using the same procedure. In fact, the only modifications needed are the
substitutions of n-Eg and n-Eg for E; and Egy, respectively, in equations (3.34), (3.35)
and (3.36). Thus, the result of (3.42) still holds true in this case. Finally, consider the
case when the target and the transmitter are on different sides of the local horizontal
of the receiver (case III). Without loss of generality, we assume that the target is
above the plane and the transmitter is below it, as shown in Fig, 3-9. Note that point
T is the mirror image of the transmitter T,, with respect to the x-y plane. Also, Tgt,

K and M form a plane parallel to the x-y plane. The point S is the intersection of the
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Note: ! Ty is out of the x-z plane, towards the viewer.
2 Tgt is out of the x-z plane, away from the viewer.
3 N is the north of the North-referenced coordinate system

Fig. 3-8 : Geometry for the conversion of the local vertical coordinate system to the

North-referenced coordinate system for case II
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S  Not:! T, is out of the x-z plane, towards the viewer.
2 Tgt is out of the x-z plane, away from the viewer.
3 N is the north of the North-referenced coordinate system

Tx

Fig. 3-9 : Geometry for the conversion of the local vertical coordinate system to
the North-referenced coordinate system for case 11
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line R,T, and the line normal to the x-y plane and passing through M. Note that

TgtM L MS, and R M = R S. Also, in the triangle formed by M, S and R,, it is found

that

MS?=RM?+RS?-2RMRS cos[2(90°-Ey)] = 2 R M %(1-cos2(90°-Egy))
2RM (1 (cosz(goo “Egp - 2(900_}3“))) =2 R,M ’(1-sin’Ey; + cos’Ey,)
M 2 cos’Epg,

4

(3.44)
where we have used the fact that the x-y plane bisects the angle £TR,T,, and the

‘lower half of this angle is equal to 90°-Eg;. However, in the triangle formed by M, S

and Tgt, we have

2 _ 2, M2
TgtS TgtM * + MS (3.45)
= TgtM 2 + 4 R M ? cos® B,
where (3.44) has been used. In the triangle formed by Tgt, S and R,, using the cosine

law, we have

Tgts 2 - TgtRx 2 &S 2 - 2 TgtRx E—g cos(90°+ﬂn) (3 46)

=TgtR, 2 + RM 2 + 2 TgtR, R M sin6,
where R S = R M has been invoked. Combining (3.45) and (3.46), and rearranging

terms, we have

TgtM * = TgiR, > + RM ? - 4 RM ? co’Ey + 2 TgiR, R M sing, (347)

Also, in the triangle formed by Tgt, K and M, using the law of cosines,
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TgiM 2 = TgiK * + KM 2 - 2 TtK KM cos(Ag-Agy) (348)

From the triangle formed by Tgt, K and R,, we have

TgtK = TgtR_ cos(B,-90%) = TgtR, sinEy (3.49)
RK = TgtR, sin(E;-90") = RM sin(90°-Eyy) (3.50)

and
KM = R,M cos(90°-Epy) = R,M sinEyy ’ (3.51)

where, in (3.50) and (3.51), we have again used the fact that the x-y plane bisects the

angle ZTRT,. From (3.50),

Substituting (3.52) into (3.51), we have

XM - TEiK, (_ .i::%’:r.) sinEy; (353)

Substituting (3.49) and (3.53) into (3.48), we obtain

cosE,
cosEpy

2
thM’=TstR,’sin’E.+_T—8Wx2( )Siﬂ"
(3.54)
cosEy

cosEpy

. 2 TgR, ? sinB,( ) sin By cos(Ag-Agy)

Substituting (3.52) into (3.47), we have
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Bl 2 - ER 2
TgtM2=TgtR‘2+TgtR‘2[co';)-4Tgtsz( )coszBm.
005 Far b (3.55)
- @K, 1( — ) sing,

Equating the right hand sides of (3.54) and (3.55), and dividing the result by TgtR, 2,

we have

sin’E, + (ﬁ?‘f&) sin’Bp. + 2 sinE‘( mE“J sinBp, cos(Ag-Agp)

M 205 Far (3.56)
cosEp \? cosEp | |

=1+ - 4 cos’Ey -

) e ()

After rearranging terms in (3.56), we again arrive at the same result as (3.42). Also, the
analysis for the case, in which the target is below the local horizontal of the receiver,
while the transmitter is above, it takes exactly the same steps as before, and results
in the same equation as (3.42). Therefore, it is concluded that (3.43) properly describes
the general situation. Then, with the expression (3.43) and using the procedures
developed in Section 3.1, 6; can be obtained.
3.4 Discussion

In this chapter, we have described the two-dimensional North-referenced
coordinate system. It adequately describes the bistatic geometry. Due to its
convenience, we have used it in our analysis. We also described two other widely
used coordinate systems and provided transformation procedures for conversion to the
north-referenced coordinate system. It should be noted that conversion from the

north-referenced coordinate system to other higher dimensional systems is not possible.
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4 ANALYSIS OF AMBIGUITY FUNCTION FOR BISTATIC RADAR

This chapter investigates the concept of ambiguity function for a bistatic radar.
First, we consider the return signal from a moving target for a bistatic radar and
derive expressions for target position and its velocity. This problem has been studied
extensively for a monostatic radar [2] but no results for the bistatic case are available
and are déveloped here. Next, bistatic geometry factors are included in the evaluation
of the ambiguity function. It is shown that plotting the ambiguity function on the
delay-Doppler plane is no longer appropriate. Suiiable arguments for the ambiguity
function are determined. Examples are given to illustrate the concepts developed in

this chapter.

4.1 Measurements on A Moving Target

Consider the bistatic geometry consisting of the transmitter T,, the receiver R,
and the target Tgt as shown in Fig. 4-1. Assume thata signal is transmitted by T, at
time t=0. It reaches the target at t=7, and the reflected signal is received by R, at t=T,.
Then the total time delay 1(t), i.e., the total travel time from T, to R, is given by

(1) Im. =1, 4.1)

The time delay t(t) is a function of the bistatic geometry, i.e., the relative positions of
T, Tgt and R,. The same value of t(t) is attained for targets lying on the same

constant range contours. Therefore, we may express

5(5) = 2R(r) = T[Ry{r) Ry(s)] (42)

where c is the wave propagation speed, R() is the total range, Ry() and Rg(") are the

range components corresponding to the transmitter and receiver respectively. Note
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T, Tgt = ( speed of light )xt;
TgtR, = (speed of light )X( T4-T1 )

total time delay ( total travel time of the signal ) =1,

Fig. 4-1: Timing relationships in bistatic radar geometry
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that (4.2) indicates that the total time delay at t=1, depends on the target’s position at
t=T,.
The time delay Tx(t), corresponding to the travel time from the target to the

receiver, is given by

() =T.-7 (4.3)
But, it can also be written as
to(5) = %R,(zl) (4.9)
Thus, using (4.3), we have
to(t) = %R,(c‘-r,(:_)) (4.5)
Similarly using (4.2),
t(z) = -i-n(r,-r,(r,)) (4.6)

Using Taylor series expansion to expand 1(t) around 7, we can write

(t-;') 1(z) +_ti')_2. a2 t(t) +- 4.7)

T(t) = (x)+ TR

4
d

Let us next consider the first two derivatives of t(t) in the above expansion. From

(4.6),
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d 1d
-Et-t('r. = _C‘Et'R(t-TR(t))lt=f.

= % R(t-toM) [1-tp®)] =,
d2

) - % [%1(0] oo,

O |

di [R(t-750)(1-t(®)] |,

%[R(t—rn(t» [1-t,OP-RE-70)3®] |,
where (4.8) has been used in deriving (4.9). From (4.5)

d - 1dp -
ETR(T‘) - c dt Rn(t Tk(t)),t=1.

= IR - -1, le=c,

C

Rearranging (4.10), we have

d 1. 1 -
-d—ETR(T .) = ;Rg(t‘fn(t)) [1 +;Rn(t—TR(t))] ! |t=r.

Also, using (4.10) and (4.11)

d°

2
& Wz n( .) = _[dt R(t)] It—r

Ry(t-5) [1-450F - Rolt-1o)50),c,

O |

%cht t(®) [1 +—Rn(t rR(t»rz——RR(t 0.

Thus, rearranging (4.12)
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:Tzfn(f.) = —l"!g(t—r,(t)) [ +%R,_(t—1:n(t))]'3|t=1‘ (4.13)

Using (4.11) and (4.13), we can rewrite (4.8) and (4.9) as

it(f.) = -l-l'l(t-rn(t)) [1+1R,(t~1:n(t))]‘1 leee (4.14)
dt Cc ¢ a
and
& 450 = LRe-ry®) 11+ LRyt TR ) Ry (-7 [+ Ry(t-5,0)
Et-z-r TY = SRty . R o R " R . 2O

%[R(t tl(t))(l+—Rg(t MO

RO-t5 O Ryt O] [1+-Rylt-3O1

%[(i-,-(t-rg(t)) +Ry(t-t,ON(1 +%ﬁg(t-fg(t)))

R IGIOE XERONEL RENON N R NENO) i
1=

[Rp(t-5 () +Ryt- Tn(t))**-'ﬁr(t TR (t-5(®) +—Rg(t TR (t-75(1)

[ o]

b

Ry(t-tp (R (t- Tg(t))-—Rg(t'fn(t))Rg(t—fg(t))] [1+—Rg(t-fg(t))]"3|t.,

[¢]

l[(1+-—R,(t —t ONRE-T(®)

(o]

+(1 --i—R.r(t-‘rn(t)))ﬁa(t'Tg(t))] 1 *’%Rg(t"‘n(t))] - It-r.

(4.15)
where, in deriving (4.15), we have used the relationships

R® = Ry)+R;y(t) and R(t) = R)+R;().

As a check, if we set Ri(t) = Ry(t) = —R(t) and T (t) = —T(t), equations (4.6),

51




(4.14) and (4.15) reduce to the well known results for the monostatic case [2].

Specifically, (4.6) can be written as

w(s) = -};R(v.-tl(t.))

- 2p ;-1
TRy(7,55(5)

- 2Ryr,57

-2g &
(=)

where (4.1) has been used, i.e., 1(t,) = 7,. Also, (4.14) can be written as

1, 1. -
02, = SR T (I + TRy (e, T

olN

R,(r.-%r(r.» [1+%R,(r.——;-r(r.»r*

oiN

e ™ 112 1R Ty
R1;(2)[1 cRg(z)]

and (4.15) can be written as

52

(4.16)

(4.17)




4y = % [(1+%Rn(r.—rn(r.)» RT(r,-w.))+(1—%Rn(r.—rn(r.)» Ry(5,~tp(t )]
1 +%Rn(r.—rx(r.»1"
= 1o LR (e - Lee g iy(r, - L e ) + (1- LRy (e - Lee g Ry(ry-2e(e )]
c c a 2 R\ "a 2 c a 2 a a 2 a

P PO
[1+CRR(7. 21(1:.))]
_ 25 Loy oy ‘(
“Ry(5 7l + Ry()]
(4.18)

For targets of practical interest, R (t)/c and Ry(t)/c are very small. Consequently,

(4.14) and (4.15) reduce to
d 1,
37 RE-RO) s, (4.19)
and
d? 1a
Pt(t‘) " ;R(t—tn(t)) s, (4.20)
Substituting the expressions for the derivatives in the series expansion (4.7), we have

(t-t,)’ 42
2 TE(')+

. t-1.)?
. (T [%R(T.—rn(t.))] G )

() = t(x) + (‘t-t.)-:—t‘r('r.)

-—R( ~rg(t )]+~ (4.21)

In the analysis to follow, we will assume that the total range is a relatively

smooth function of time, over the coherent processing period, such that the second
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and higher order derivatives can be dropped, i.e., R(r,-t5(7), R(t,-t5(z), ~ are

negligible. Note that this assumption may not hold true for a maneuvering target.
It will further be assumed that the transmitted radar signal is narrowband, so that the

complex envelope of the signal is insensitive to the target’s motion. That is,
Bt—{r, + Lt JR(r, -1y (e DD = F(t-1)) (4.22)
c

where f(t) is the complex envelope of the transmitted signal. In short, we have

assumed that the range rates of the second and higher orders are negligible, and the
effect of the first order range rate, upon the complex envelope, can be ignored. The
validity of these assumptions has been generally accepted for monostatic radars [2].
Yet, little consideration has been given to the bistatic case. From the analysis in the
following subsection, it is found that, for the same target motion relative to the
ground, the resulting range rates are smaller in the bistatic radar than in the
monostatic case. Therefore, in this work these assumptions are employed for the
ambiguity function analysis of bistatic radar. However, a detailed study of this issue,
i.e., the conditions under which these assumptions are valid, is desirable and may be
carried out in the next phase of this effort.

With the aforementioned simplifications, the return signal can be modeled as

1t) = b/Eft-1®) ™V +ict)

= b,/Eftt-<,) QTR i O gteT (4.23)

where b is given by the reflectivity of the target, E, is the energy of the transmitted




signal, @, is the carrier’s angular frequency, T is the duration of the signal, andfi(t)

is the complex envelope of the additive noise.

Note that the term t, in (4.23) is given by the total range, and the term

-°-°R(t‘—1:n(t‘)) represents the Doppler shift. Then, the delay 1, and the Doppler shift

ﬁli(t.—tn(w:‘)) can be extracted by using a matched filter and a square-law envelope

détector, as described in Chapter 2.

In the following, we will examine the manner in which the measurements of
range and range rate are related to target location and its velocity. That is, for a
hypothesized target location and its velocity, the resulting total time delay and
Doppler shift will be derived.
4.1.1 Range and Target Location

In bistatic radars, the target location may be specified either with respect to the
receiver, or the transmitter. That is, in the North-referenced coordinate system, the
range Ry and the angle 8;, or the range R; and the angle 6;, are given to specify the
target location. Given the baseline, the calculation of the resulting total range from
a given target location is then straightforward.

In the case wheré target location is given in terms of Ry and 6, recall equation

(3.1,

R = Ry+/Rj+L2+2R;Lsin6,

Thus, with the additional knowledge of the baseline, the total range is determined.

To emphasize the functional relationship between the total range and the parameters
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Ry, L and 6y, we define the function

D, = D(R,L.6;) 4 %[RIL + {R3+L?+2R; Lsinfy ] (4.24)

Note that Dy is the total time delay given as a function of Ry, L and 6;. In the case

where the target location is given in terms of Ry and 6;, from (3.11), we have

R = Ry+/Ry+L?-2R Lsin6, (4.25)

We may define the total time delay D; as a function of Ry, L and 6; in a similar

manner, i.e.,

D, = DRL,-8,) = %[R,JRTHL’—ZRTLsmeT] (4.26)

Now, the total time delay, or equivalently the total range, can be found using the
function D. In other words, when bistatic geometry is given in terms of Ry, L and 6,
or in terms of R,, L and 6;, the resulting total time delay is given by Dy, or Dy,

respectively.

4.1.2 Range Rate and Target Velocity

As derived earlier, the Doppler shift is given by o, = %QR(r'-tx(t.)).

Since the time argument in the measurements is not of concern in this analysis, it will
not be expressed explicitly in the following derivation. We will first consider the
generalized case where T,, R, and Tgt are all moving, as shown in Fig. 4-2, and then
focus on the effects of target motion alone. Note that the angle ¢y is the angle
between the transmitter’s velqcity vectér V; and the north of the North-referenced

coordinate system, while the angle ¢; is the angle between the receiver’s velocity
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vector Vg and the north. Both ¢; and ¢y are measured in the same convention as 6y
and 6;, i.e., they are positive clockwise. The angle ¢ is the angle between the target
velocity vector V and the bistatic bisector, positive clockwise from the bisector. By

definition, it can be written that

d.  do d
dp._dp . d (4.27)
e

From Fig. 4-2, it is easy to see that
IRy = -V cos -1y, coster0p (428

Note that the first term on the right hand side of (4.28) is the velocity projection of
V along the line connecting Tgt and Ty, and the second term the projection of V;

along the same line. Also, we find that
LRy = -V costo+lEhy-v, oot (429)

Here, in (4.29), the first term on the right hand side represents the velocity component
of V along the line connecting Tgt and R,, and the second term the component of Vg
along the same line. The appearances of the absolute sign in (4.28) and (4.29) are due
to the way P is defined. Recall that § = 6-6;. Then, 0 < B < & when the target is in
the northern hemisphere, and -t < B < 0 when the target is in the southern
hemisphere.

Thus, substituting (4.28) and (4.29) into (4.27), we have

57




Tgt
A
o\
§
4 ;;‘B/z 4
§
/
¥
bistatic —Or
6 bisector
—or N R
VT VR
Ty Ry

Fig. 4-2 : Velocity relationships in bistatic radar geometry
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r - -Vicoud-LBLy+ contp+1E1y1- V. condr-0 -V cost 8

- -V[oos¢oos-g-+sin¢sinigl+cos¢eos%-sin¢sinjgll
- Vc08 ($7-0,) - Vg cos (by-€p)

= —2Vcos¢oos—g- - V. cos ($,~B7) - V cos (g - 65) (4.30)

The last two terms on the right hand side of (4.30) are due to transmitter and receiver
motion. In this project, we assumed that these two quantities are known, ie.,
transmitter and receiver are operating in a cooperative mode and the Doppler due to
their motion can be subtracted from the measured Doppler. Equivalently, it was
assumed that both the transmitter and the receiver are stationary in the following
analysis. Now, the remaining term is the one due to target motion. This term
indicates that the resulting Doppler shift is determined by the projection of the target

velocity along the bistatic bisector. Note that the Doppler shift depends on the target

location in the bistatic geometry and it appears in (4.30) via the term cos% Also, due

to the multiplication factor, cos %, the Doppler shift due to the target motion for the

bistatic radar is always smaller than or equal to |2V cos ¢|, the corresponding

Doppler shift for the monostatic case.

Next, we derive an expression for cos—:- in terms of the bistatic geometry

parameters L, R;, and 6;. From trigonometry
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oos B - ’1+cos‘B (431)
2 2

From the law of cosines,

L2 = R«: + R’Z_‘ZRTRR cos p (432)
Rearranging the two sides of (4.32), we have
2 .n2
cos p - e L’ (4.33)
2R R,
Substituting R, = ‘/1?..f+L2+2Ran.in6R into (4.33), we have
2 . .
cos p = uPRylsind, _ Ryelsingy 434)
2RyyR;+L?+2R;Lsind,  {Rg+L2+2R, Lsinfy
Then, substituting (4.34) into (4.31), we have
Ry +Leindy (4.35)

yA'S coscbcos—B— = 2Vcos¢\J 1,
2 2 2 2 .
2R3 +L?+2R;Lsin®,

Again, to emphasize the functional relationship between the resulting range rate and

the location parameters for the bistatic geometry, we define the function

1, Ryelsmdy (4.36)
2 2fREL742R Lsin6,

That is, the Doppler shift is expressed as a function of V cos ¢, Ry, L and 6;.

W = W(VeosdRy L6 a2 [ 2 Voos4>J

Alternatively, substituting R, = ‘/R.lz.+L2—2R.l.1.¢zin6T into (4.33), we have




cosp - TRty RyLeind, (4.37)
2R RI+L2-2R, Lsind;  |Ry+L?-2R;Lsind;

Then, substituting (4.37) into (4.31), we have

1, Ryl (4.35)
2 p[RE+L?-2RLsind,

We may define the Doppler shift Wras a function of V cos ¢, Ry, L and 6y, as follows

2Vcos¢cos% = 2Vcos¢\J

W'r = W(VCOS¢,R1,L,-6T)

=) (439)
® cole R, -Lsin0, ]

Thus, with (4.36) or (4.39), the resulting Dobpler shift is described in terms of the
target location for the bistatic geometry.

In the analysis thus far, we have derived the target return model for bistatic
radars. The geometry factors in the measurements have also been examined by
relating the measurements with locations. In the following, we will consider the
consequences on the representation of ambiguity function for bistatic radars.

4.2 Ambiguity Function Plots for Bistatic Configuration

In radar systems, waveforms are selected based upon their ability to satisfy the
requirements for detection, measurement accuracy, resolution, ambiguity and clutter
rejection. Ambiguity function plots are examined for a qualitative determination of
the suitability of different waveforms in meeting the above system requirements [1].
In practice, ambiguity function is plotted as a function of delay and Doppler derived

from the return signal. In monostatic radars, the use of delay and Doppler as the
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arguments of the ambiguity function are adequate because of their linear relationship
with the desired quantities, ie., target range and the range rate. In particular, the
delay is equal to two times the range divided by the speed of light and Doppler is
equal to two times the range rate divided by the wavelength. Therefore, the pair
delay and Doppler or the pair range and range rate may be used in an interchangeable
manner as the arguments of the ambiguity function. Note that once the target range
and range rate are known, its position and its relative (radial) velocity with respect
to the monostatic radar are known completely.

For a bistatic radar, the above observations are no longer valid due to the
geometry of the bistatic configuration. The transmitter and the receiver are not at the
same site and, therefore, the relative position and the relative velocity of the target
needs to be determined with respect to either the transmitter or the receiver or some
other suitable reference point. In addition, the effect of the transmitter and the
receiver not being at the same site should be taken into account while computing the
ambiguity function. In Section 4.1, two functions D() and W(.) with respect to the
transmitter and functions Dg(-) and Wg(:) with respect to the receiver were defined.
Here, we fécus our attention on the evaluation of the ambiguity function with respect
to the receiver. Similar results can be obtained with respect to the transmitter or any
other reference point.

In the bistatic configuration, the baseline L is assumed to be given. When we
evaluate the ambiguity function with respect to the receiver, the receiver’s look angle
Oz can also be assumed known. The actual position of the target can be determined
from the knowledge about the distance between the target and the receiver, i.e., the
range Rp,. The total time delay based on these system parameters and the bistatic
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geometry can be expressed as

- 1 2 2 .
Dy, = <Ry, +‘/‘iz,‘+1. + 2R, L sin 6]
Also, the Doppler shift due to target motion which takes into account the bistatic

geometry can be expressed as

RI‘+Lsinﬂn
2‘/§:_+L2+2R,‘Lsinﬂ‘

1

W, = 20V cosd |+
R : 2

where V, is the target's actual velocity along the bistatic bisector. As in the

monostatic case, the ambiguity function for the bistatic radar can be expressed as a

function of the delay and Doppler, ie., as e(Dn,an;wn,,’wn,)' As discussed before,

the delay and Doppler terms include the effects of bistatic geometry. Note that the

subscript "H" denotes the delay and Doppler bin that is under investigation. The

peak of the ambiguity function occurs at the point where D‘ﬂ=Dn_ and Wy =Wpg .

While the ambiguity function expressed in terms of Dy and Wy provides some
information, its utility is limited. This is because in most applications, resolution in
terms of the position and velocity of the target is desired. Due to the nonlinear
relationship between the pair delay Dy and Doppler W, and the pair Ry and V, one
cannot immediately observe the behavior of the waveforms as a function of Rg and
V. This is especially inconvenient due to the fact that the primary purpose of the
ambiguity function is to provide a visual representation of waveform behavior as a
function of position and velocity. Therefore, we suggest the use of Ry and V as the

arguments of the ambiguity function. This will enable one to examine the suitability
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of different waveforms in a convenient manner. In the following, we present two
examples where we consider a Gaussian pulse and a pulse train consisting of three
rectangular pulses. Ambiguity function plots as a function of Ry and V for a variety
of bistatic configurations are given. These exhibit the effects of geometry on the

ambiguity function. In these figures, Rr represents R, and both R, and R, represent

Example 1: Simple Gaussian Pulse

We first consider a transmitted waveform whose complex envelope is a simple

Gaussian pulse. Let

+2

1 ——
i) = (%)‘ e ™ ~ewgtgo (4.40)
3
Note that f(t) has unit energy since
_ {1 2
fOP = (—) e 7 (44D
aT?

. ] . . . 2 .
is a zero mean Gaussian function with variance '-1;- The target return can be written

as

jop Lo 2

- -7 - [0 -t

Ft-c) "™V = (Lyte M
nT?

(4.42)

The time-frequency autocorrelation function, as defined in Chapter 2, is given by




[ fe-s) ™Y Fty ¢ Yoo g (4.43)

¢(Tm1.:mpnamp.) =
Let z=t--'-“—;'3. Then,

. T cy. Jop@rET  jop -t
Begtoonop) = [ Harm FE-EH ™ e

‘&z

00
el(u.,nwn_)(—'“—,—'-) f fa+ :,;2-1_.) F(z- 1%‘:) el(%,,-un,)z 4y (444)

Substituting (4.40) into (4.44), we have

-
_ Kepgrep XY L d eEyer -
¢(tﬂ,t.,mnn,mn_) = ¢ 2 f (:1;)’ e °? e ?

- 00

(4.45)
‘e "(“Dn"‘ba)‘dz

Completing the square in the exponent in the integral, and simplifying, we have

-, L 1 (upﬂ-un.)'l‘z
_ Jopg + 0p)Y U IR L e
$(v g7, 0p ,0p) = © :/; (:T_;) e
.1 [('u"-)z . (pgvp)T )
e ™ ¢ y dz
R . . Al
_ oo - (429

where the identity
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has been used. Then, by definition, the ambiguity function is given by

B(t T 0p ,0p) = “’“m"v‘"n,;“’n,”z

_ ta?  epgengT (4.47)
2

=@ r?

Figure 4-3 is the plot of the ambiguity function in the delay-Doppler plane given by

(4.47) with parameters T=1.2x10"* sec, t,=4x10* sec and wp, =1200 rad/sec.. For the

monostatic case, the ambiguity function is commonly plotted in this manner. For the
bistatic case, if the bistatic geometry is ignored and the ambiguity function is plotted
in terms of total delay t,; and Doppler wy, the resulting ambiguity function will be
the same as shown in Fig. 4-3. Also given in Fig. 4-3 is the equal-height contour plot,
where the magnitude, as a fraction of the peak value, is shown alongside the contour.

Aé discussed before, for monostatic radars, the ambiguity function given in

(4.47) can also be expressed in terms of the range and radial velocity as

oy D, 200V 200V, (4.48)
c Cc

0 ("H’Tv"’n,,""n,) =0 ( T .

where R, is the orie-way range and V), is the radial velocity of the target. For

comparison, Fig. 4-4 is the plot of (4.48) by setting the carrier frequency

@, = 3x10® rad/sec, the actual distance Ry, = % = 6x10* m, and the actual radial

e 600 m/sec. Note that, except for constant scaling factors, Fig. 4-3
P g g

velocity V“. =

2w




Doppler ( Actual Doppler = 120((rad/sec) )

Delay ( Actual Delay = 4.0e-4(sec) ) x10-4

Fig. 4-3 : Ambiguity function for monostatic radar in the delay-Doppler plane
for the Gaussian pulse
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x104 T= 1.2e-4(sec)
25 T T T 5 T

600(m/sec) )

Radial Velocity ( Actual Velocity

15 i 5 5
2 4 6 8 10
One-way Range ( Actual Range = 6.0ed(m) ) x104

Fig. 4-4 : Ambiguity function for monostatic radar in the range-velocity plane
for the Gaussian pulse
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and Fig. 4-4 have the same shape. This was expected due to the aforementioned linear
relationships.

However, as proposed earlier, ambiguity function for a bistatic radar with

respect to the receiver needs to be written as e(Dnﬁ, Dn,- Wnﬂ, Wn., so that the

transmitted waveform’s response to the target can be directly related to target’s

position and its velocity. In Figures 4-5 to 4-11, we give the plots of

B(Dn,,’ Dn,' Wnn, Wn‘) for various values of receiver look angles. For these results, it

has been assumed that Rp = 6x10* mand L = 10° m. Also, the actual velocity

component along the bistatic bisector, V,, is set at 600 m/sec. With these
specifications, the target locations considered represent an operating region close to
the receiver. From the resulting ambiguity diagrams, it is obvious that the effects of

geometry factors are more prominent as the target approaches the baseline. Moreover,

when the target is on the baseline, the resulting delay is L and the Doppler is zero,

regardless of the position on the baseline and the velocity of the target. Therefore,

the ambiguity function diagram of equal height in the region

0« R,ﬂ sland -e <V < »is obtained, when the receiier look angle is equal to

—%. Next, we consider the target at a distance larger than the baseline, by changing

L to 5x10* m. That is, the region being considered encompasses both the transmitter

and the receiver, ie., the cosite region. Figures 4-12 to 4-18 are the plots of the
corresponding ambiguity function O(Dna, Dn_' Win’ W,\), for various values of receiver
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case considered:

GR;90°
L=100km
RRa=60km
V,=600m/sec

x104 T= 1.2e-4(sec)
2.5 T T T T !

600(m/sec) )

( Va=

A

-1.5

Rr (Rra=6.0e4(m)) x104

Fig. 4-5: Bistatic ambiguity function for the Gaussian pulse for the case
considered
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case considered:

6R=300

L=100km
Rg,=60km

V,=600m/sec

x104

2.5

( Va= 600(m/sec) )

\Y

Fig. 4-6:

Rr (Rra= 6.0e4(m)) x104

Bistatic ambiguity function for the Gaussian pulse for the case

considered
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case considered:
\A '/

Og=0°
L=100km
RR,=60km
V,=600m/sec
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e e S e ™,
T o,

x104 T= 1.2e-4(sec)
2.5 : g g g g

( Va= 600(m/sec) )

\Y%

Rr ( Rra= 6.0ed(m)) x104

Fig. 4-7: Bistatic ambiguity function for the Gaussian pulse for the case
considered
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case considered:
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2.5
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Fig. 4-8:

Rr (Rra=6.0e4(m)) x104

Bistatic ambiguity function for the Gaussian pulse for the case
considered
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case considered:
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Bistatic ambiguity function for the Gaussian pulse for the case
considered
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case considered:
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7 R .\ -
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I I BRI T ——)

Rr ( Rra= 6.0c4(m)) x104

Fig. 4-10:  Bistatic ambiguity function for the Gaussian pulse for the case
considered
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look angles. When this case is compared to the previous one (with larger baseline)
the degree of resolution lost due to geometry factors is less. For example, compare
Figures 4-10 and 4-17 for 6;=-85" where we observe this effect quite clearly. This
phenomenon is due to the fact that in the latter case the total range R=R+R; is much
larger than the baseline L. As R increases with respect to L, the degree of resolution
lost due to geometry factors will continue to diminish and the bistatic system will
behave more and more like a monostatic system. In fact, in the limit as L—0, the
bistatic system becomes a monostatic system.

Example 2: Three Rectangular Pulses

Here, we first consider a sequence of (2n+1) rectangular pulses having a

constant repetition rate of 1/T, with a subpulse duration of T and then specialize the

result to the case of three pulses. The duration of the pulse train is Ty = 20T +T. In

many practical situations, T<<T, where T, is not necessarily a multiple of T. Also
note that duty cycle T/T, < 50% is the only case of interest. Let the complex envelope

of a subpulse be denoted by

1

., _T T
i = {7 TSt (4.49)
0 ;elsewhere

The complex envelope of the pulse train can be written as
1 n

¥ a(t-KT,) , (4.50)
y2n+1 k=-n

fo) =

where f(t) has been normalized to contain unit energy. Assume that the target does

not fluctuate in the period Ty during which it is illuminated by the signal.
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We first evaluate ¢(1y, 7, @p “’D_) for |ty-1,| < T. From (4.44), we have

f(t+__’*‘;‘) Fr(t-—E Tty ¢ TP 0 gy

00

: TH™Y
j@pgrop N—-) f
2

¢(rH,t_,wDH,le) =e

—00

n rop J(TET P .
= 1 E ej(%ﬂ ("D.)( 2 ) j‘kTp lz(T ITH .I) ﬁ(t—kT + |‘H 1“])
2n+1 g=_p KT, -2(T-[vg-7, ) P2
- x TE T, “Hwpy~wp )t
1 (t—k’l‘l,——| = ly ¢ ¥mond'gy @51)
Letz = t-kTP. Then,
1 j(“’pn"% )(?) n “Nop,-wp KT,
Ty TeoWp »s¥p )= e ' Y e 8™
¢( I’ e Dy D.) i+l Keon
LYy ST - - - -
. le(T lta-7) iz + Ity .|) ﬁ,(z_hﬂ 1.[) R i(op,-op )z dz
"E(T'!TH"‘.I) 2 2
TH-T M QDH_DDl - -
= _1 ej(%ﬂmbnx Hz 9 g e'j("’Dn""D.)“p 281[](( 2 (T |TH Tal))
2n+1 k=-n (an—mD.)T
H QDK-UDI 1 : %H_QD.
R P
2n+1 Sin(((DDH __wD.);rig) ((A)DH“(A)D.)T (4.52)

Now consider the case t;-t, > T. Note that there is no overlap of f(t,+__._.|‘“2"'l ) and
- T —‘l‘. . . - T _1‘|
f (t——-—I “2 |) in (4.51), until ty-7, = T, - T. When t;-t, = T, - T, the term f(t————| “2 )

is displaced to the left by T’—: and the term f‘(t+¥) to the right by 1’-22 Then one

less pulse is included in the overlap, as illustrated in Fig. 4-19. We thus conclude, for
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Fig. 4-19 : Computation of ambiguity function for the three rectangular pulses
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gt Tpl < T,

i(oprop X B 1 i(0p~wp KT
4’(7}1’7-’“’1)“""1)) 21 RS Y e i(epy-wp)) 3
* 2o+l k=-n+1

KT 2Tty T -
f P 11 H" T 14 u(t_krr |TH s |) ~ t(t lﬂ‘ l‘H . p) j(ng ""D.)t m
KT, (T 147, Ty )

TH-T, i QDH-%' - —_r =
_ 1 Jengep)Eh S engop)iT, 2sin| (=T~ 1477, TPI))
2n+1 k=-n+1 (wDH—wD‘)T

. 9py~“p, Lo
1 e““’Du*"’D.)(LHT_E) Zmn(( g xT_hH-ta_Tpl)) sin((wp, ~wpJnT,y)
- . T
2n+1 (mDH (OD,)T sm((“’n,,""n,)_zg) (4.53)

Carrying on in this manner, there are (2n+1) expressions similar to the ones given in

(4.52) and (4.53). Thus the general expression for the time-frequency autocorrelation

function is

von )BTy D 2si P D) T - |15y, KT, l))
¢(1Harp (‘)D ,wD) = 1 ej(%a %')( z ) E i ! P
H M 2n+1 k=-n (mDH—wD.)T
' - _1kph e
ot (KT sinf(ap, ~wp)(2n+1 kD-2) (4.54)

T el

Finally, the ambiguity function is given by the magnitude square of (4.54). That is,

87




B(*wTw@py@p) = [$(tyT,0p ,0p)

2
2n+1 k=-n ((.)DH —mD.)T

. . | - ®pg~“D,
1 e-"“"Dn*“’D.X‘H . g 2510(( . )(T‘|TH‘T.‘HPD)

o, KT, sinf(wp, ~wp )2n+1-k)F)

- rect( > -

T sin{(0p, ~0p) )
R 2sin((“’°“2'°"">cr—hﬂ-r.—k'r,,l))
) k=-pn 2n+l (wDH—wD.)T

inf(wp_-wp )2n+1- k)2 T,
Sm( Dy D, Tl | 2)|2 rect(L‘kTP) 4.55)
s (0p, -0 i

1 . . .
where we have assumed T < > Ty In Figure 4-20, we give the plot of (4.55) assuming

the carrier frequency w, = 3x10% rad/sec, the number of pulses transmitted

N =2n+1 = 3, the subpulse duration T = 4x10” sec, and the period T, = 10* sec. Also,

it is assumed that the actual delay t, = 4x10* sec, and the actual Doppler

Wp, = 1200 rad/sec.

For monostatic radars, Figure 4-21 shows the result of (4.55) plotted on the

RMﬂ —VMH plane, i.e., it is plotted with the hypothesized one-way range and the radial

velocity as variables. Note that, here, R, = fz_ = 6x10* m andV,, = _;:.)'l = 600 m/sec..

0
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Again, as before, the ambiguity function for the bistatic case will be the same as
shown in Fig. 4-20 if bistatic geometry is ignored. On the other hand, when this three
rectangular pulse train is employed in a bistatic radar, the resulting ambiguity

function with respect to the receiver can be examined by writing (4.55) in the form of

O(DRH, Dn_’ WRB, WR.). The results are plotted in Figures 4-22 to 4-26 assuming that

Rn. = 6x10%m, V, = 600 m/sec and L = 10° m, for various values of receiver look

angles. In order to compare the ambiguity function for the above receiver-centered
region with the cosite region, we change the value of L to 5x10* m. The results are
plotted in Figures 4-27 to 4-31, for various values of receiver look angles. Now, it is
again seen that the geometry factors have more profound effects in the receiver-
centered region than in the cosite region. Moreover, within the same operating
region, the effects of geometry factors are more prominent when the target is closer
to the baseline.
4.3 Discussion

In the previous section, it has been indicated that the ambiguity function for
a bistatic radar needs to be plotted with respect to an appropriate point. For example,
the reference point can be the transmitter site, the receiver site or some other point
of interest. In the examples, we focussed on ambiguity function plots with respect
to the receiver only. Similar results can be obtained in other cases. Two examples
were considered which demonstrated the fact that bistatic geometry plays an
important role in ambiguity function analysis. It was observed that, in the regions
close to the receiver, geometry factors have a more pronounced effect on the resolution
capabilities of the transmitted waveform than in the cosite region. In fact, resolution
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is totally lost if the target is on the baseline. Note that these effects cannot be
observed if the ambiguity function is plotted using delay and Doppler as arguments
in a conventional manner disregarding the geometry. Note further that even for a
simple three rectangular pulse waveform, the bistatic geometry significantly affects
the ambiguity function and the associated parameter estimates. This effect will be
even more pronounced with more complex waveforms based on PN sequences. The
methodology presented here must be used to assess the capabilities of transmitted

waveforms for bistatic radar scenarios.




5 CONTINUOUS-TIME CONTINUOUS-FREQUENCY AMBIGUITY
FUNCTION OF A SAMPLED SIGNAL

In our work thus far, we have assumed that continuous signals are processed
at the receiver input. In practice, however, most modern radars sample the signal
after it has been frequency translated to baseband. This sampled discrete-time signal
is processed using digital signal processing techniques. Next we consider ambiguity

function analysis based on the sampled signal. First we consider the case where

T, T, @, and o, are allowed to assume all possible values. In this case, the

ambiguity function is a continuous function of time and frequency even though the

received signal has been sampled.

5.1 Likelihood Ratio Test for a Discrete Signal

We return to the detection problem as discussed earlier, but assume that the
complex envelope of the received pulse, #(t), is represented by N complex samples

£, ¥, Iy The detection problem is now characterized by the two hypotheses

H:f =8+
1+ L= Sty 5.1)
H,: T,=1, k=0,1,..N-1

where §, §,,., 8, are samples of the received signal complex envelope

§(t)= \/E_t b If(t—w:.)ej"""t attimest = 1y + k—:;, and fiy, fi,.., fi;_, Tepresent samples of the

complex envelope of the Gaussian white noise process fi(t). As before, assume that
f remains fixed over the duration of the signal pulse and is statistically independent

of the noise samples. Let  be the (column) vector whose elements are
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f, k=0, 1,.,N-1. We introduce the notation

m, = E[f|H;] and m, = E[f/H,] (5.2)
for the conditional mean vectors of ¥ under hypotheses H, and H,, respectively. Also,
we denote the covariance matrices under H; and H, by

K, = E[((F-@)F-@)"H] i=0,1, (53)
where the superscript H denotes the conjugate transpose (Hermitian). We may then

write the conditional probability densities of ¥ under H;, i=0,1, as

P RIH) = anlK,l exp {-R™-mOK, R} i=0lL (4

Here, |K,| denotes the determinant of K. The likelihood ratio test is given by

Pi- IHl(ﬁ |H1)

AR) A .
Py, (R|Hp

g e B
= 1'].
-@E-mDK;' @ i <
IK1I e thy )Kq 1) Ho

Taking logarithms, we obtain

R"-mg)K;' ®R-ihy) - R0} )K; R-1i,)
(5.5)
mn-+mK|-0Kl A v.

S5 A v T
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5.1.1 Zero-mean Case

Let the mean vectors on the two hypotheses be equal to zero. Then

-

m, =m, =0

The likelihood ratio test reduces to

H,
- - - >
RH {Kol _ K11} Ry, (5.6)
H,
Denote the inverse of the covariance matrix K, i=0,1, by Q,,
Q -K' =0l 5.7)
The likelihood ratio test can then be written as
H,
- - >
R'Q,- QR 7 . 58)
H,

5.1.2 Zero-mean Vectors and White Noise Case

In addition to the mean vectors being equal to zero on the two hypotheses, let

the noise be white with power N,. Then

E[d 2"] = N, I
where I represents the identity matrix. Let K, denote the covariance matrix of the
signal,

Ef 7] = K, .

It follows that
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K, = E[f F"|Hy] = E[@ @"] = N, I (5.9)
and
K, = E[f £¥[H,] = E[G + D + D]
= E[s §"] + E[@ @"] = K, +N L
The latter result uses the fact that the signal and noise are uncorrelated and

both have zero mean. The elements of the vectors § and i are§,, fi,, k=0, 1..., N-1,

respectively.

Consider again the inverse relationship between Q, and K,,

QXK =1L
It was shown above that
K =K, + N, L
Now express Q, as
1
Q - F[I - H] (5.10)

0

where H, is an N x N matrix. Substituting for K, and Q, in the first equation yields
1
—[[-H] K, +NT =1
No

which simplifies to
K, - N, H, + H, K, (5.11)

We notice that this equation is the discrete-time analog to the integral equation

obtained in Sec. 2.4 for the continuous case. Since
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- - 1
QO=K01=[NOI]1=—L
N,
we have
Q =Qo'inl
N,
Or we can write
Q -Q =‘l—Hl'
N

0

The likelihood ratio test can, therefore, be expressed also in terms of the matrix H,:

H

—

> (5.12)
<
H,

5.1.3 Comparison with an Estimation Problem

Consider the minimum-mean-square-error (MMSE) estimation problem shown

in Fig. 5.1; §,p,; = H, £ denotes the minimum mean square estimate of § and

f = § + ii. By definition, §,,,,; - § and ¥ must be orthogonal:

E[(ypgsz 91 513)
= E[(HS + Hi - E + D] = 0.
Assuming the signal and noise vectors to be uncorrelated and zero mean, we get
HK+HNI-K=0
or K,=N,H, + H K, (5.14)

This last equation is the same as the one found previously. We conclude that H,
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=

> SMMSE

Fig. 5.1 MMSE estimation problem
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characterizes the filter which generates the minimum mean square estimate of

s from F.

5.2 Ambiguity Function for the Discrete Signal

For the slowly fluctuating point target case, let the elements of the signal vector

§ at the receiver, assuming reference time delay 1, and reference Doppler frequency

Wp,» be given by

5, = b B Frye’™ ™  k=0,1,.,N-1

(5.15)

where T, is the sampling period. Now define the Nx1 column vector ¥ with

elements
& - fkT) &' k=0,1,...N-1
so that
5 -6 /E¥
and

where E_ denotes average energy
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E, = 20, E,

r

We now introduce the matrix H, from Sec. 5.1.2 and assume H, to be of the form

H =c? A
where ¢ is a constant. We are interested in finding c so that H, is the solution of the

matrix equation derived in Sec. 5.1.2,
Ka = NO Hl + Hl Ks’
which is the discrete form of the integral equation in Sec. 2.4. Substituting for K and

H, from above gives

E, P9 =Nc?® +cE %" ¢ 9" (5.17)

Notice that ¥" ¥ is a scalar and represents the energy of the vector ¥. Assume this

energy to be normalized to unity:
(5.18)
We have then

or

giving

—__l_m——_—l




H, = % g (5.19)
N0+Er
The likelihood ratio can then be rewritten as follows:
- LRUE R
N,
1 _ B gugerg
NQ No + Er
_ (5.20)
E P <
L 9" Rp
NO N0 + Er
1 E ® L, Jup, KT, 5
= — | ¥ R (kT %
No NO + Er k=-o k .)e

The received vector R can be written as the sum of the incoming actual signal

vector §, and the noise vector i:

R = 5, + i (5.21)

The samples which constitute §, assume a reference delay 1. Thus, the elements of §,

are
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5, = b ET,-the’ ™" k=0,1,..., N-1 (5.22)
ak ]

where </ is the delay discrepancy t, - 1.

For the parameter estimation problem, the likelihood function is the same as

the likelihood ratio. At first we assume b given, so the likelihood function is

E +00 ., _
1 2 xR PEr)e N
No N0+El‘ k:—m

LR[b)

|kT'

—E—l’ +oo ~ - - r -j .
| T F&T,~ehe" ™ e Fi@Te TR

1
No Ny+E, k=-o

E 2 ik F o -jo, -
i L | X ® f(kTs-‘c/) ej kT, fie J DHkT') F (kT’)|2 5.23)
NO N0+El' k:—w

Here, m,’, is the Doppler shift discrepancy o, - Op, -

Averaging over the distribution of b yields the likelihood function as a

function of only the parameters / and wp;

b = [ L@ b)B)db (5.24)

where f,(b) is the density function for b. We can write

E +a8 +® -~ ‘0/ ~ % -~ -~
Fi" ™| T B Bkr,-che’P™ F&T,)* £(6) db
0 N0+Er - k=—m

b =

+ (noise x noise term) + (noise x signal terms)
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2 + o0 - _ L
= ———O;—E—E_— > f(lﬂ',,“f’)f*(kl',)ew"k’r'|2
NoNo*E) k=-o

+ other terms involving fi, . (5.25)
The point in the 7/, wll, plane for which & is maximum represents the maximum
likelihood estimate of the pair (<, wp) for a given pair of values (ty, ©p,)-

The continuous time, continuous frequency ambiguity function of the discrete
signal is proportional to the noiseless part of the likelihood function & and is given

by
B0 = | T HKL,-tH (T )el ™" (5.26)
k=-o

5.3 Relationships Between the Continuous Ambiguity Function of the Discrete Signal

and the Continuous Ambiguity Function of the Continuous Signal

We compare now the AF (ambiguity function ) of the discrete signal, obtained
in the preceeding Section, Eq. (5.26), with the AF of the continuous signal as

presented in Sec. 2.3., Eq. (2.48)
a(op = |f _mf(t—‘:’)f"(t)ej“’é’t atp. (5.27)

Let ¢ </, wp) denote the time-frequency correlation of the discrete signal,
/ g - (oL KT ,
o thon = T T~ &T)e P (5.28)
k=-o
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so that

8,(t0p) = |, (thop? . (5.29)

Similarly, let ¢(z/,wp) be the time-frequency correlation of the continuous signal f,
+OD - ~ 0/
o(\op) = [T HE-oHE e’ dt

so that

8(x/,wp) = |d(x/,wp)[%
We can express ¢d(’-'/»“’1/3) as follows:
+00 - ,
o, (thop) = T f fit-E (e’ ™ 8(t-kT )dt
k=-0 """

- .. o +00
= [T 0’ T 8t-kT) dt
- ke oo
Using Poisson’s sum formula, the sum of impulses can be written as [7]

+00 +00 _p"%g

L dtkK[)=— T e o (5:30)
k=-o T, p=-m
This results in
+oo o . +joll>t—jz-—tgt
oWop) = T [THesdtoe | va
R (5.31)
+00
=1 T e 2B
Ts p=-o Ts

Finally,

114




8,(c\ o) = |bthon = | G ’,m{,-z—?)lz

l p=- s
+00 400
- L2 ¥ eehep- 2"1’)4»(’ )
T' p=—c° k——eo T'
+00
= —1—2 p G(‘r’,mé,—zﬂ’)
Ts pr-= T’
1 = = / 211:p 21k
- X X \ Lo .
+ T poe k=—w¢( Wp- )¢( T.) (5.32)
k#p

The above relationship shows that the AF of the discrete signal consists of the AF of

the continuous signal repeated in frequency every Tl Hertz, and some other terms due

to the overlapping of ¢(t/,wp- 3—_’;2) and ¢*(v/,0p- 2%“), k#p. When T, is chosen

properly so that aliasing due to overlapping does not occur, the above result reduces

to

8,(v\vp) = —‘; T (', wp -2"!’), (5.33)
T, p=—

Thus, we have the relationship between the AF of the discrete signal and the

continuous signal.
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6 DISCRETE-TIME DISCRETE-FREQUENCY AMBIGUITY
FUNCTION OF A TIME SAMPLED SIGNAL

In this chapter we seek an expression for the discrete-time discrete-frequency

ambiguity function of a sampled signal. We begin by considering a signal that is

sampled both in time and frequency.

6.1 Expression for a Signal Sampled in Both Time and Frequency

Consider a signal §(t) that is nonzero only on the interval [0,T]. A signal3 (t)

that is time limited to interval [O,Td] can be obtained from §(t) in the following

manner:

5 0<t<T,

5,1 = { (6.1)
0 elsewhere

where Ty < T, We can write §(t) as

S, = 8().wy(t) (6.2)
where
1 0<t<T,
0 elsewhere.

A periodic version of §(t) is now created by replicating §,(t) every 1/A seconds

where the spacing between the replications is required to be greater than or equal to

T4 This can be done by convolving §(t) with a periodic impulse train, as shown

below,
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51 =5 X 8¢ (6.4)

m=-o
Notice that

§(® 0<t<T
s0={ ‘ (65)
0 elsewhere.

§(t) is now sampled every T seconds to obtain §°(t). Formally, this can be

expressed as

50 =5® T 8(-KD
k=-

= T §kT) 3(t-kT). (6.6)
k=-

Assume Ty = (N-DT. Note that §,(kT) is zero for k < 0 and k > N-1. A periodic

version of §(t) is obtained by replicating §,t) every % seconds. This results in

§0 =50+ T 8-

m=-o

+oo
X o5t

m=-o A

+o N-1

Y X 5T 8¢t-kT-2). ©7)
m=-» k=0 A

Note that §p(t) is discrete in time. Because it is also periodic in time, its Fourier
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transform is discrete in frequency. It is in this sense that §p(t) represents a signal

which is sampled in both time and frequency. Observe that the m=0 term in the
expression for §p(t) is equal to §°(t). Since §(t) is equal to 5,0 fortelo, (N-l)TJ,ﬁp(t)

can also be written as

+o N-1
gp(t) = ¥ X §(kT) 8(t-kT-D). (6.8)
m=-co k=0 A

The signals arising in the transformation from §(t) to §p(t) are illustrated in Fig. 6.1.

Assume that the spectrum of §(t) is approximately bandlimited to the interval

[-B,B], as shown in Fig. 6.2. Therefore, to prevent aliasing in frequency, the sampling

interval T should be chosen such that

1.2 (6.9)
T

(i.e. the sampling rate should be greater than or equal to the Nyquist rate). In order

to avoid aliasing in time, the sampling rate in frequency should be chosen such that
(6.10)

%sz+e

where € is a small non-negative constant added to prevent aliasing of the end points.

Since T, = (N-1)T, note that
% > (N-DT+e€ (6.11)

or equivalently




s(t)
Ml} — !
5. (1)
0 Te=(N-1T =t
5, (1)
aWaN aNaN
" —
8, (1)
TJ““A“ -t
0 (N-DT
5, (1)
JTTm“ JTTm..iTTTm.gﬂTm..m
0 1/A

Figure 6.1 - Illustration of signals arising in the transformation from §(t) to §p(t).
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A
-
0 Ty
Spectrum of S, (t)
-

Figure 6.2 - Sketch of §,(t) and its spectrum.
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% > NT. (6.12)

6.2 Discrete-time Discrete-frequency Ambiguity Function

The continuous time continuous frequency correlation function, whose
magnitude squared is equal to the AF, is given by
+00

f f(t—1:.)f"‘(t—1:)e12 "Dy

&(=9

+00

= [Ht-r e Fa-re Pt (6.13)

-0

where the subscript  denotes the fact that the time-frequency correlation is with
respect to the signal (). Let

g(t) = f‘(t_.r‘)ejz"fat. (614)
g(t) is the desired target return at the input of the radar receiver with actual time

delay 1, and actual doppler frequency f,. f(t-t)e?"" is the reference signal used by

the matched filter in the receiver with reference time delay t and reference Doppler

frequency f. For convenience, the subscript H is not used in this analysis. As a

function of §(t), we can write

+o00

oed = [ BOF E-ve P MdL (6.15)

This choice for representing ¢, is meaningful in the sense that it involves the
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correlation of the desired target return with the reference signal to obtain the time

frequency correlation ¢y-,").

6.3 Sampling the signal in time and the signal spectrum in frequency
Now assume that discrete samples are present at the input of the receiver
instead of a continuous waveform. Let the discrete samples be obtained by sampling

a continuous waveform both in time and frequency. Following the same procedure

as developed in the previous section, the versions of §(t) and f(t) that are sampled in

both time and frequency are expressed as

go= X T gK&D3-kT-D

m=-o k=-o

+00 +o00

fo= T T iemse-a-y (6.16)

| Y
n=-o f=-co

where the sequences 3 (kT) and f (kT) have been limited to the intervals [YNT, (N-1)T

+ YNT], v an integer and [0, (N-1)T], respectively. The time frequency correlation

function involving §p(t) and %p(t) is given by
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b0 = [EOF - e P
- [ £ T g&D3¢kT-D
Co M=—0 k=
- T X B 8@-t-r-3) e Pt
n=-o {=-c0

Let p=k-0 and g=m-n. Then, é=k-p and n=m-q. Note that

) (t—l(I'-—’;—') S(t- ~ﬂ‘-—%)

8 (t”kT-%) S(t-t —kT+pT—-‘;T‘ +%

8 (t-KT-2) 8 ([t-KT-2]-[s-pT-1D)

8(t-KT-2) 8 (s-pT-9).

Therefore,

+00 +o00 +00

+00
$c=H= L T - L X g, kD, kT-pT)

m=-—oo k:—m q:—m p:—m

+00
f 3(z-pT-3) 8 (t-kT-3) e Pl
+o0 400 +00 +00

. X I I X §&DLG-pD.
m=-oe k:—m q:—m p:—w
3(:-pT-9) e Eaies]

Poisson’s sum formula states that
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+00 —j21lf2 +00
XY e * =2 X 8¢ma) (6.20)
m=-% m=-oo

Thus,

+00 +00 +00 +00

#@H= T T T T g&nIGTpD
P m=-o k=-o0 q=-® p=--o
(6.21)
8(< —pT—%) A §(f-mA)e BT,

Assume A and T are chosen such that z_lr = L where L is an integer greater than (N-1).

Also,let v = p+;“; = p+qL. Note that v is also an integer. As q ranges from - to +co,

v also varies between -c and +e. Introducing the change of index,p = v _air’ %(T,ﬂ

can be expressed as

+o00 +00 +00 + 00

d(zH=2 ¥ X X X gKDELEr-vT+d

m=-o k=-o q=-®oy=-o -

6.22
3(t-vT) 8(f-mA) e PrmAkT (6.22)

By defining the discrete-time discrete-frequency correlation function of 'f'p(t) as

+00 +00
dvm=i £ T gEDEKI-vT+) ¢ RradlT, (6.23)

k=- q=-®

the expression for ¢; (t,f) can be written as
1 4
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+00 +00

D= T &om 3c-vD) 8(f-mh). (624)

V=-o m=-o
“Note that cl;;’(t,f) is periodic both in time and frequency.

Sampling only the signal in time

From the expression for ép(t), observe that the m=0 term results in

E® = T g®Dde-kKD = §0. (6.25)

| m=0 k=

Also, from the expression for fp(t), observe that the n=0 term results in

2 | +oo N (6.26)
f® = X D3 = ().
P | n=0 t= oo o °
Since g=m-n, m=n=0 implies q=0. Hence, when g=m=n=0,
+00
@EP(T,DI om0 f ée(r) £ (t-v)e #dt (6.27)
A $(zh) .

By straight forward substitution of the expressions for ée(t) and %e(t—r), we obtain

(=D = [ I BD 8GkD T W) d-o-mm) ePha (629

To k=-o 0=-w
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Let v=k-¢. Then t=k-v. Observe that

8(t-KT) 8(t-t-(T) = 8(t-kT) 8(t-7-kT+vT)
= 8(t-kT) 8[(t-kT) - (z-vT)]
= 8(t-kT) 8(z-vT). (6.29)

It follows that

oo

¢:zh= X X gD L ET-vT)

k=-0 v=-o

f 3(t-kT) 8(c-vT) e ¥ gt
= £ ¥ g&DEET-vD) 3(c-vT) e #ET. (6:30)

k:."-m vV=—00
Note that ¢4 (7,f) is sampled in the delay variable t since the correlation function is

nonzero only for t = VT where v is an integer.

Although ¢;(7,f) is a continuous function of the frequency variable f, in

practice the correlation function will be evaluated only at frequencies spaced A Hertz

apart. In effect, ¢;(r,t) is sampled in frequency as well. Analytically this is

accomplished by multiplying ¢ (,f) with
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comb,(f) = 4 X 3(f-md). (6.31)
m=-o

This yields

& (c.f) comb, () = A Y ¥ ¥ g&DEKT-vD) e ¥ 3(x-vT) 8(F-md)

k=-0 y=-0o m=-oc

=2 £ X X g&DIET-vT) e # ™K 3(x-vT) 3(f-md) .
k:—oo vV=-0 M=-®
(6.32)
The discrete-time discrete-frequency correlation function is defined to be
by =4 T BHD LKT-vD) o B (6:39)
Then
o comb,® = T T é(vm) 8(z-vT) 8(¢-mA) . (634)
* v=-wm=-0
Recall that
oz $2nf 6.35
g1 = F&T-1) ™. (6.35)

If ) is viewed as the frequency spacing in the DFT for ?‘(t), then A = Fl'r'

Consequently, the discrete-time discrete-frequency correlation function for the time

sampled signal ?‘(t) becomes
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1

2 “j2m(=-£ kT (6.36)
: (v = NT .
dvm) =

Y f&T-t) f/KT-vT) e
k=-o

This is the form we will use for the discrete-time discrete-frequency correlation

function of the truncated, time sampled signal, £ (t). By definition, the corresponding

discrete-time discrete-frequency ambiguity function is
(6.37)

6; (vom) = |3 (v.m)|* .

Thus, we have the desired expression for the time sampled signal.
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7 LINK BETWEEN THE DISCRETE-TIME DISCRETE-FREQUENCY
AMBIGUITY FUNCTION AND THE CONTINUOUS-TIME
CONTINUOUS-FREQUENCY AMBIGUITY FUNCTION

In this chapter, we are interested in finding the relationship between the

discrete-time discrete-frequency correlation function ¢4 (v, m) and the continuous-time
4

continuous-frequency correlation function ¢; (t, f).

7.1 Sampling the Signal in Time and the Signal Spectrum in Frequency

By definition, the signal f(t) is nonzero only over the interval [0, (N-1T]. The

periodic signal E,(t) is formed by replicating f,(t) every -} seconds. Specifically,

£, = £, * comb:(®) (7.1)
Y
where
comb;(t) = X 3(t-1). (7.2)
Ey f=-0 *

%p(t) is obtained by sampling ?p(t) every T seconds. In particular,

2 7 (7.3)
£, = £0 - comb(t)

where

comb(t) = X 3(t-kI). (7.4)
k=-o
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By definition, the time-frequency correlation function between the signals

f(t) and g(t) is

+0o0

bpr(eD = [ 80 F't-1) e P at (7.5)

When §(t) = ?(t-ra) el ¢,:(z.,) is only a function of f(t). Hence, we replace the
subscript gf by f and write

+00

owd = [30) F'e-1) e #har. (7.6)

Consider now the time-frequency correlation function given by

+00

oD = [0 Et-0) e Pha (7.7)

The following properties hold. These are derived in Appendix A.

L 4 (ex) = dy g (00 = [ g, (B, com, (T -B%) B
e L (7.8)

+00

= [ 0By, s, (F-BX) B
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+00

2. @D = 4 g (0D = [ by (Ao coms, (19 A

(7.9)
+00
= [ & (53t com, (7 D)X
where g0 = g0+ comb(t) (7.10)
and g,® = g,(t) . comb (®). (7.11)
We see, therefore, that
oD = [[ 48R O () G (1610 B 7.12)
where
+® Lo +eo
eompous (D = [ T B(t-KD) T 3(t-t-(T) et
k=~ f=-o
+o0  +oo T® (7.13)
=X X f 3(t-KT) d(t-t-IT) e #rE-gt
k=-o f=-» "o |
and
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+o00

+00
Somtyms B0 = [ T 080D 2 3(t-7+p-L) o Tt
+0  +oo t®
=X X f 8(t-1) 8It-(c-B)-X] e #dt.
{=-o0 k=-00 "
Let m=k-¢. Then ¢&=k-m and
+00 +o0 ™

Peomisycom (7o %) = k:E—oo mg_m f b(tfm 8 (t-7-kT+mT) e #=2'dt
oo +oo to®

=Y X f 3 (t-kT) & (t-mT) e #¢-gt

k=-0o m=-00

+ o0 +00

= Y Y 8(x-mT) e Pkl
k=-o m=-

Using the Poisson sum formula,

Y 8(-mD) =

m=-o

R
e ﬂ"Tt.

Iltqg

1
Tmhm
Therefore, the expression for Quyp, oo, () becomes

+ +o0 oem
Y % e-intwrr g BT

=—00 Mm=-00

1
¢canbr,canb.r(r’f—x) = ? K

(7.14)

(7.15)

(7.16)

(7.17)

Following a similar procedure on the expression for ¢, ..., (7-B,x) we obtain

s 7

+00 +00 _jzxx_l_ '
¢00mb1.emnb1(t—ﬂ,x) = A 2 E e i e —ﬂ"nl(-‘_p).

A S l=-c n=-o
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Substituting the simplified expressions for ¢ (t-B.x) and ¢ (t.f-x)
comb %'mf comb.,comby

into that for @p(x,f), we get

D = [[ B -2

+00 + 00

]
¥y % o BTN g -i2mmAie-P)

f=-00 n=-o0

+00 +00

Y ¥ entoa P Tgpax

k=-0 m=-o

From Poisson’s sum formula, note that

] 1 ® k
E e -ﬂ‘l!(f"x)k'r = 2 6 (f—x__)
k-__- —o T k: —00 T
and
00 1 g
E e—ﬁn(!‘pm = E 6 (T—B_E)‘
=0 A n=-oo A
Hence,
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T AL 11
é1 (.9 f { B0
T % ™™ au-p-B
{=~00 p=-00 A

prg-Ey L
by (7 —i’-,f—%) e M, (7.22)

Recall that A is chosen such that A = 1/LT, where L is an integer greater than N-1.
Then

ki k
epuﬁ ) ejZn-_;ﬂ.T

- L (7.23)

The expression for ¢; (t,f) is simplified further by again recognizing from Poisson’s
| 4

sum formula that

x
-j21t2
Y e T
m=-

=T ¥ 8(z-mT) (7.24)

m=-o

and
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It follows that

¢;‘p(T )

Y o T o8¢-m). (7.25)

{=-00 {=-0
1 ®© © o © n K
—A-T- X Y ¥ X -—f-—
T2 {=-c0o p=-o0 k=—00 m=-o0 %.(T A T)
8(x-mT) 8 (f-00)
A © % ®© o a K
Ay ¥ ¥ ¥ p@r-R2a-d
T g=-w n=-w k=-o m=-w &, A T

3 (t-nT) &(f-€A)

1
T m=-o {(=-c0 °

k=-ow n=-o (7.26)
3(z-mT) 8(f-LA).

Let A be the spacing between two successive frequency components of the N-point

DFT for f,. Then

A = (7.27)

L
NT

This implies that L = N. Observe that this value for L is greater than (N-1), as

required to prevent aliasing in the time domain. Hence,
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o0

1 5 1 ] 1
%(T’D T e 1] NT k_z_a, n_E_a, ¢, ((m-oN]T, [-kN] )
¢
8(t- -——). 7.28
¢§’(T,ﬂ can also be written as
d’fp(“,f) = l x Yy d)a(m,ﬂ) 3(z-mT) b(f——) (7.29)
T m=-o {=-o b
where
L ¥ 5 1 (7.30)
bmp=— T X _aNTT, [0-kN]-L). .
bmd = gr I T d (ImooNIT kNI

%(m,l), the discrete-time discrete-frequency correlation function of the discrete

periodic signal f is a repetition every — = NT seconds in time and = Hertz in

frequency of the continuous-time continuous-frequency correlation function for the
continuous time limited signal f (t).

7.2 Sampling the Signal in Time and the Correlation Function in Frequency

Equation (7.30) expresses the relationship between the continuous-time

continuous-frequency autocorrelation function ¢; () and the discrete-time discrete-

frequency autocorrelation function 6; (). Recall that the signal %p(t) is sampled in
P

136




time every T seconds while the spectrum of f’p(t) is sampled in frequency every A

Hertz where A = .
NT

In a similar manner, we now find the expression of the discrete-time discrete-
frequency autocorrelation function <i>; (") of the signal %e(t) which is sampled only in
time every T seconds. Consider the time-limited signal f‘e(t). %.(t) is obtained by

sampling f(t) every T seconds. In particular,

B = £ . comby) (731)
where
+00
comb () = X 8(t-kT). (7.32)
k=-o0
Using properties developed in Appendix A,
+00
(7.33)

G (D = [ O 0R) Oty com (T D) OX

where, as shown in the previous section,
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+00 +00 m
Y Y e-istwer o FTT (7.34)

’f—x) = l
T k=-0o m=-o

¢ccmb,,comb.r(t
Substituting the expression for ¢ mb_pwmbr(t,f -x) into that for (bf.(-r,t), we get

iy ; o RRE-NKTg _m%‘dx. (7.35)

+00 )
i(7.f) = (0= X
%. _'/; ¢f° T k:—oo m=-oo

From Poisson’s sum formula, note that

+00 ‘ +00
r edntaw o1 5 g Ky (7.36)
k=-c0 T k=-o T
Hence,
iod ] Tt pem, K
i (1) = tx) — X Y e T 8(fx-=)dx
d,;. _j; 4);' T? k=-0 m=-c T
+00 +00
(7.37)

1l v ¥ (bf.(T,f—%)e_jz T

" T? k=-o m=-®

This expression can be simplified further by recognizing from Poisson’s sum formula

that

+o00 —j211:21' +00
Y e T =T ¥ 3C¢-mD. (7.38)

m=-oo m=-oo

It follows that
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by (52 8(-mD)

1
T k=-0o m=-o

i +00 k
T, Z, A seou. 73

Since f(t) is time limited to the interval [0, T l, ¢3(s.0) is time limited in the

argument T to the interval [t-T, 7,+Tg4], as shown in Appendix B. Observe in the

latter expression for ¢; (t,f) that the argument t takes on only the discrete values mT

where m is an integer. Due to the finite time extent of ¢; (7,f), m needs to range only

from y-(N-1) to y+(N-1), where v is the integer value closest to %, in order to cover that

portion of the t-axis for which <|>§.(1:,f) is nonzero. Thus,

o n=y+(N-1) k
X ) ¢; mT,f _T) 3 (t-mT).

1 (7.40)
T k=-= m=y-(N-1)

¢; (v.) =
Because %.(t) is sampled in time every T seconds, we see that ¢;.(r,t) is sampled in 1

every T seconds. In other words, ¢§.(1:,f) is a discrete-time continuous-frequency

autocorrelation function.

In practice, ¢;(r,f) will be evaluated only at discrete points in the t-f plane.
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Consequently, we now sample ¢; (,f) in frequency. Analytically, this is accomplished

by multiplying ¢; (1,f) with

comb.(f) =K X &(-K). (7.41)
{=-o00
This yields
g = v@®D e
¢; (v,f) comb () = = X > )
' T k=-= m=y-(N-1) ¢=-

d)f.(mT,f—%) 8 (v-mT) 8 (-1K)

© y+(N-1) ©

-K 5 > >
T k=-o m=y-(N-1) ¢=-o

(7.42)

d>;.(mT,2K——¥-) 8 (x-mT) & (f-IK).
By examination of the latter expression, the discrete-time discrete-frequency

autocorrelation function of the time sampled signal %e(t) is defined to be

b = T o@T&-D; =stso y-N-Dsmey D (749
then

K VAD =
LD > L $md 3G-mT) $(-K). (7.44)

$; (v.0) comby () =
m=y-(N-1) =~

Recognizing that
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comb () =K X ¥({f-K), (7.45)

0=

it follows from the above expression that

y+N-D
biehH =2 T &mddG-mD 746)
T m=y-(N-1)

Note that the k=0 term of §;(m,0) is given by

b @0, K ¢ @T,K); -= < L < 0 y-(N -D<ms<y+N-1). (7.47)

Therefore, the k=0 term is nothing more than a constant times the continuous-time

continuous-frequency autocorrelation function of the time limited continuous signal

?e(t) evaluated at the points (mT, €K) in the 1-f plane where m and { are integers such

that y-(N-1)smsy+(N-1) and -=<l<». Also, note that 6, (m,? is the replication in

frequency of 4>f'(mT,QK) every % Hertz. As was the case in the previous section, the

DFT of N time samples spaced every T seconds results in a transform whose

frequency components are spaced every §1'r- Hertz. Consequently, K is chosen such

that

K= (7.48)

1
T
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Then &;.(m,é) becomes

1
NT

1 (7.49)

&m0 = — ) I ¢ @T[-kN]

NT By -(N-D<m<y+(N-1).

From the previous section, the discrete-time discrete-frequency autocorrelation

function of the signal ?p(t), which was generated by sampling both f(t) in time and

its spectrum in frequency, was defined to be

[-

A 18 _ et L
b@o = gr T T amaNT e

~00 k=-o00

(7.50)

It is seen that 6; (m,?) can be obtained from d‘)g’(m,l) by letting n=0 in the expression

for %(m,e). In a similar manner, it can be shown that the discrete-time discrete-
frequency autocorrelation function for f(t), when only the spectrum of £@ is

sampled in frequency, can be obtained from &;'(m,c) by letting k=0 in the expression

for ¢y (m,0),.

7.2 Aliasing considerations

It is shown in Appendix B that ¢ (1,f) has both twice the time duration of the

signal f(t) and twice the frequency duration of the spectrum of f(t). The expression




that relates &ga(m,ﬂ) to ¢f°(mT,[Q—kN] —N%) shows that @(mT,%) is replicated in

frequency every % Hertz. This is illustrated in Figure 7.1 where the spectrum of £

is assumed to be bandlimited to the frequency interval [-B, B]. In order to avoid

aliasing, it is necessary that

— 2 4B. (7.51)

Therefore, the signal I’e(t) must be sampled in time at a rate that is no less than twice
the Nyquist rate if aliasing is to be avoided between the replications of¢-f’(mT,-NLT).

When aliasing is avoided, we have

$; @m0 = ﬁl,r— %,(mT,—;%r-) (7.52)

where 7-(N-1) < m < y +(N-1). From Appendix B it is apparent that the primary

interval is spanned over frequency for those values of ¢ such that
p-(N-1) < ¢ s p+(N-1) where the value of p is the closest integer smaller or equal

f, . . . . .. .
to = = fNT. Since the discrete-time discrete-frequency ambiguity function is the

magnitude squared of the discrete-time discrete-frequency time-frequency correlation

function it follows that
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&m0 = [ @0 (7.53)

is periodic in frequency with the primary interval extending for

y-(N-1) s m < y+(N-1) and p-(N-1) < & < p+(N-1).

The effects of aliasing for the complex envelope

f(t) = V2w Sigz’;tw‘ = /2w sinc(2wt) (7.54)
w

are shown in Figs. 7.2(a) through (d). Because of the presence of the sinc function, (t)
is bandlimited to a bandwidth of w Hertz. By analysis, the continuous-time

continuous-frequency AF of f(t) is

_ f-f, @w-[f-f) _ _ e 112 (7.55)
Bt = | rect (-8 = sine [G-e)@w- ADIP L

This is plotted in Fig. 7.2(a) for w=1. The discrete-time discrete-frequency AF of the
sampled signal f(t), using a sampling frequency equal to twice the Nyquist rate, is
shown in Fig. 7.2(b). Note the periodicity of the AF along the frequency axis and the
lack of aliasing. The AF in the primary interval of Fig. 7.2(b) is identical to the
continuous-time continuous-frequency AF in Fig. 7.2(a). When the sampling rate is
dropped to 1.8 and 1.5 times the Nyquist rate, noticeable aliasing occurs, as shown in
Figs. 7.2(c) and (d). The aliasing becomes more severe as the sampling rate is
decreased. A sampling rate less than twice the Nyquist rate can be used only if the

aliasing that is introduced can be tolerated.
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Fig. 7.2 (a) - Original continuous ambiguity function
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Fig. 7.2 (b) - Discrete ambiguity function: 2 Nyquist rate sampling

147




—_———

———
=

==

e

\\
AN
I',:‘t““\\\\\\‘\!‘-//
/" “““‘ '.,/
sl
A .
o

=

N

I
>

¢S

-~
——

X
=

==

=
l"::““\\‘\\\\\' 33

o7l
N

7

i

Sosxl/
=il

!

&
?
X/
0.’0‘0_‘0, A!
$230707722 %,
%

Y

Fig. 7.2 (c) - Discrete ambiguity function: 1.8 Nyquist rate sampling
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Fig. 7.2 (d) - Discrete ambiguity function: 1.5 Nyquist rate sampling
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8 RECONSTRUCTION OF THE CONTINUOUS AF FROM THE
DISCRETE-TIME DISCRETE-FREQUENCY AF

In this chapter we consider the reconstruction of the continuous ambiguity
function when the discrete-time discrete-frequency ambiguity function is available.
A number of cases are considered.

8.1 Signals Sampled in Both Time and Frequency.

Recall that .fp(t) is the periodic signal obtained by sampling both f,(t) and its
spectrum in time and frequency, respectively. Define

1 1
Ost<2 8.1)

recti(t) =

3 0 elsewhere.

Then the sampled version of £(t) (see Figure 6.1) is given by

20 = ® rect1 . (8.2)
A

£,(t) can be recovered from 41".(t) by low pass filtering the latter. In particular,

£® =5® » by (6.3

where
hyo(® = sinc(%). (8.4)

It follows that
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e = T i ,(@T) smc(———) (8.5)

n=-o

Recognizing that
B0 - 0 recti® - 5,0 £O 8.6)
80 = B0 rectit-7) = §O O ®.7)

and using the product property (A.2) from Appendix A, the time-frequency correlation

function of 4i~’.(t) can be written as

¢ B0 = [ 41 (B0 &, (B dx
= [ (B0 &, B dx

where § (1) = £(t-v) "™, £,(0) = rect1(9), and g,(t) = recty(t-r,). With respect 0 &,®,

notice that recti(t-t,) is nonzero for 1, <t <t + % .
A

Also, recognizing that
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E® = E® * by = L0 » 4,0 (8.9
8O =0 = hp® ™ = 30 * g0 (8.10)
and using the convolution property (A.1) from Appendix A, the time-frequency

correlation function of f(t) can be expressed as

b (oD = [ 4B &, (c-BHAP

- f & (B.D &, (x-B.DAP = &; (z,) (8.11)

where é.(t) =%.(t—‘t'.) e” 'f", £,® = h;p(t), and g,(t) = h,,(t) et g,(t) arises because,

in order to pass undistorted the spectrum of g (t), a rect function centered at f, should

be used to filter the spectrum of g (t). This is equivalent to convolving i(t) with

hyp(t) et we see, therefore, that

&0 = [[ 4B &, (B0 ¢, ,(--p dp dx (8.12)

where
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-x) = t1(t- t1(t-B) e ¥*0-dtge . (8.13)
b, (B L rect1(t-x) rect 1(t-p) ¢

Fig. 8.1 shows the plots of rect 1(t-t,) and rect;(t-p). The product of the two
i y

functions is non-zero for the following cases:

Case A T, <P<rcx +—1—nndtrunsfrompto1: +—l—
a a A a A.
' 1 1
Case B -r.——l—<b<t.andtrunsfromr.top+—l-
For Case A, t, < P <1, + —i- Then
T+l
s 2
b BfD = [ e B gt
B
_ et wy
—2x(f-x) | »
pag0p _ o w0y )
= e -
2n(f-x)
+ b 71 |t & "“. -—l— i (p-') —_.l_
_ e-n-u-n[’z" Y [ -4] e o[ F5 - 5 (8.14)

J2x(f-x)

For Case B, r.—% < P < 1. Then

153




rect;;(t-T,)
A
1
: »{
Ta T,+1/A
rectyp (t-)
A
1
- L
B B+1/A

Figure 8.1 Sketches of recty(t-v,) and recti(t-p) for arbitrary values of t, and p.
3 )
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b B0 = [ ePa

1
e ‘iZ‘l(f—X) I [ "’-i'

-j2x(f-x) | -

Px(t-x)( n+§)
_e

~ e-—jlt(f—x)t.
2n(f-x)
PN . 0 ] P L
_ e_jz'a_x) _'Tﬂ!,..z_li e pxlt )[ 2 2] _ eﬂz (fx)[ 2 2 (8.15)
2x(E-x) )

Noticing that p > t, for Case A while p < ¢, for Case B, the results obtained for

QM(B,f—x) for both cases A and B can be combined to result in

. . (B.f-%) = - e’ ’“”’[‘p?"zli] . sin {2"(f‘:)(f;':);"l - %]} . (8.16)

The expression of ¢M(r -B,f) is given by

+00
0B = [ B0 e Pt bt -[t-P]) e dt. (8.17)
It is readily shown [4] that ¢, , (t-B,f) can also be expressed as
+o00
(8.18)

6, (c-B:D = f fGv-§f) BpGv-ip e?cP dv
where ﬁu.(iv) is the Fourier transform of l"‘m'(t)° Since i'lm:(t) is the sinc function, its
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Fourier transform is given by

HGH = T rect; [T(f+-)]. (8.19)

The expression for ¢M(t—p,f) becomes, therefore,

+ao0

by PO = T2 [ rect; [T(v-f,+-1)] rects [T(v-£+-2)] e#=0P gy, (8.20)

Sketches of rect: [T(v—f,+—)] and rect; [T(v-f+—L)] are shown in Fig. 8.2. The
, T @n T e@n

product of these two functions is nonzero for the following cases:

1 1 1

Case A f. <f< f‘+7r' and v runs from f—a- to f‘+Eﬁ
1 1 1

Case B f.-; <f<f and v runs from f.——to f+ﬁ

For Case A, f,<f< f.+l. Then
T
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recty [r[T(V'fa' 1/ (ZT))]

A

f,-1/(2T) f,+1/(2T)

rect; ;[ T(v-£-1/(2T)))

A

— i
£-1/(2T) f+1/(2T)

1 .
Fig 8.2 Sketches of rect 1 [T(v —t‘_+(—;1—)—)] and rect L [T(v —f+31')_)] for arbitrary f and f,.
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£+ L
*en

b 8D = [ TIelmeP gy
-1
f @n

—~| 1
_ Tz ejz"(‘ ()] I f.+a).

2x(x-p) | &

L )(x~ . Y
eﬂ'(f. an = ® ejzl(f a P

= T2
i2=(x-B)
x(.-f+ 1B 5 ]
B s L T S (8.21)
j2n(x-B) '
ForCase B, f, - L < f<f . Then
T a
f+_1_
en
¢ M(t_p,f, = f T2 ei2%vG-B) gy
f--1
2 an
R
1
i2z¢-p) | &
exzx(ba%x:—p) eu-a.—;‘,,—x«-»
= T? _
j2n(x-PB)
B A i 0z
= €
j2x(z-P)

Notice that f > f, for Case A while f < f, for Case B. The results obtained for

¢M(r—p,f) for both Case A and B can then be combined to result in

B et L

i _ (8.23)
=(t-PB)

0%(': -B.D =
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Substituting the expression derived for ¢M(ﬂ,f —x) and QM(t -B,f) into that Of%(t,f)

we obtain

i e[ 224 )

&G = [ £ T & (B:) - D

o2 4]
x(t-B)

[ .+_L

ﬁ

(8.24)

. —jZ:(f—x)[ + Pt =2 dpdx

We now replace the expression for %(B,x), as derived in Section 7.1, Eq. (7.29).

Also, letting A = Fl'r_’ &; (z,f) becomes

+oo

D = T f f T 2 ¥, (m,0 8(p-mT) Bx-—)

{hﬁ_x)[ I8 -4 l }

x(f-x)

sin{zu[|f—f.|—§ = )
n(t-P)

SN e WO W BRI P 2% ]
e—"h“‘)[z zA] “z(hf‘)z dﬂdx

(8.25)

Carrying out the integrations, we have
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o re sin {Zn(f—i) LT -“,11}

HH-T £ T §my- NT 2
==t E-—)
NT

sinf2x[|f-£, | - 1] *;T}
x(t-mT)

—th(l—i-!r—) [nTﬂ.+¥]+‘z'(f4) aT

e ! o, (8.26)
This latter expression for ¢; (v.0) allows recovery of the continuous-time
continuous-frequency correlation function of ?’(t) from the discrete-time discrete-

frequency correlation function of ‘f;(t). Notice that a priori knowledge of t, and f,

is required for the reconstruction of &; (1,D.

8.2 Signals Sampled Only in Time

As pointed out in Section 8.1, f.(t) can be recovered from i’.(t) by low pass

filtering the latter. Namely,

£ = £@® * b

= $ * gf _t.
f.(t) * sinc (T)

+o
= Y fe(n'l') sine (t—TnT) . (8.27)

Using property (A.1) of Appendix A, we can write that
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+00

&0 = [ &BD b, (x-BD dB

where ¢M(r—p,f) was derived in Section 8.1, Eq. (8.23). It is given by

s3]
n(v-P)

—

2 &P

¢lwfs(t —ﬂ,f) =
Therefore,

+00 « -,‘___’-
oD - [ -TPEBHE

sin{21{|f—f.|‘ﬂl;l}_ ap .
n(t-B)

Recall from Section 7.2, Eq. (7.46) that

-1)

1

= X 6:“ (m,f) 8(B-mT)
T m=y-(N-1)

+

(B =

where 7 is the closest integer to /T. Substituting the expression for

¢; (B,D into that of q_(t,f), the latter becomes
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(8.29)

(8.30)

(8.31




1 ,
weo =1 [ |, i acp-mm 7T

o m—1~ -1
sin {21: lf—f‘l—l —';’—}
L(t—ﬂ) T] 2 a8
L T P
! -v—(N -1) Himbe
sin (2x1-£,|-7] =7 (8.32)
n(t-mT) )

This latter expression for %(t,f) allows the recovery of the continuous-time

continuous-frequency correlation function of ?‘(t) from the discrete-time continuous

frequency correlation function of the time sampled signal f’.(t).

In a previous section it was shown that aliasing in the discrete-time discrete-

frequency AF can be avoided by sampling ?,(t) at a rate greater than or equal to twice

the Nyquist rate. When the Doppler frequency, f, is known, the Nyquist rate

suffices, as explained below. The Doppler shifted spectruni of £,(t) is sketched in Fig.

8.3 for f, > 0. Since f, is known, it is possible to shift the spectrum to the origin, as
shown in Fig. 8.4, by appropriately mixing the received signal with a sinusoidal
oscillator tuned to f,. For the spectrum of Fig. 8.3 the Nyquist rate is given by

f, = 2B. (8.33)

Samples obtained employing the Nyquist rate can be used to interpolate to any other

values for f(t). To avoid aliasing of the discrete-time discrete-frequency AF, recall
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Spectrum of ?e (1)
A

-B+f, 0 B+f,

Fig. 8.3 Doppler shifted spectrum of f,(t) assuming £, > 0.
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Shifted Spectrum of ?c (t)

)

Fig. 8.4 Spectrum of Fig. 8.3 shifted to the origin
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that the sampling rate should be at least as large as

2f, = 4B. (8.34)
However, using interpolation, the 4B samples per unit time can be generated from the
2B samples per unit time. Hence, if the Doppler frequency is known, aliasing can be

avoided even when the sampling rate is as small as the Nyquist rate.

When the Doppler frequency, f,, is unknown but its maximum value, f, ., is

known, alaising can be avoided by sampling at
f, = 2(B+f, o) (8.35)

where(B+f, ) is the largest possible frequency for the Doppler shifted spectrum of

?.(t) This is true, because, as was done for the known Doppler case, the 2(B+f, o)

samples per unit time can be used to generate the 4B samples per unit time required
to avoid aliasing.

When the Doppler shift is completely unknown, it is guaranteed that no
aliasing will occur only if the sampling rate is greater than or equal to 4B, which is

twice the Nyquist rate.
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9 SIGNAL REPRESENTATION FOR
THE NON-COOPERATIVE CASE.

9.1 Introduction

From a signal processing perspective, non-cooperative bistatic radar differs from
the cooperative case with dedicated transmitter in two major respects:

i) The transmitted signal is not designed specifically for bistatic radar
applications, and

ii) A significant discrepancy can exist between the actual transmitted signal and
the signal which at the receiver is assumed to have been transmitted.

The implications of (i) are a generally reduced performance compared to the
cooperative case with dedicated transmitter, and the possible need for special
processing which takes into account the nature of the transmitted signal - e.g.,, TV
broadcast signals, FM broadcast signals. These issues require more extensive
investigation and will not be addressed here.

The implications of (ii) are also a reduction in detection performance compared
to the cooperative case with dedicated transmitter. A first step toward a thorough
evaluation of this effect is a suitable signal representation for the non-cooperative

case. This is considered in Section 9.2,

9.2 Signal Representation

We consider an actual transmitted signal with complex envelope as in (2.12),

fit) = A(t) e®O, 9.1)

resulting in a received signal as in (2.22), assuming a single point target:
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SR(t) = \/5 Re { \/E:B?(t"r.) ejwnut ejwct}. (9.2)

An incorrect representation, at the receiver, of the transmitted signal can
involve errors in

a) the assumed transmitted carrier frequency

b) the epoch, i.e., the exact timing of the transmitted signal

¢) the complex envelope

We see from (9.2) that an error in ®, which will be denoted ., adds to or
subtracts from wp,. Similarly, an error in epoch, denoted 1., adds to or subtracts from

1,. Specifically, suppose that the reference waveform available at the receiver is

delayed by 1. compared to the actual transmitted signal, and up-shifted in carrier

angular frequency by o, giving
E (1) = Alt-t,) 079 ¢ = -1 ¢ ©3)

Expressing (9.2) in terms of f_(t) as given in (9.3), we have

sp() = v2 Re {‘/E;B f (t+r -1,) "m0 ej“’c'}, 94)

where any complex constants are absorbed into b.

Consider now an error in the complex envelope. Let the transmitted complex

envelope, as assumed at the receiver, be
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M) + L = A® e®0 + A 1) ™. (9.5)
The term fe is assumed to be devoid of a component proportional to f; that is,

[ o Eoa = o.
Combining (9.5) with (9.3) gives for the reference waveform at the receiver
B0 = [ft-7) + Et-))] e (96)

In terms of this reference waveform, the expression for the received signal (9.2)

becomes
sg® = V2 Re { /B B[T,,f(t +r€—r;)-f€(t—r,)ej“’et] L ej“’°t}. ©.7)

Next we consider how the various errors reflected in (9.7) affect the expression
for the ambiguity function. We use the symmetrical form of the ambiguity function

given in (2.51),

‘ @ o~ /. wa / .

9(1:’,0);)) = |f f(t--'-;—) f (t+%) ejwpt dtlz, (9.8)
where t/ = T,~ Ty and wlg = @p ~p . In order to express the ambiguity function

as a function of Ry and V,, the receiver-to-target range and the target velocity
component along the bistatic bisector, the substitutions derived in Chapter 4 have to
be used. This is not done here in order to simplify the discussion.

Now let the received signal (9.7) get processed with hypothésized delay and




Doppler t,; and W respectively. Thus, let

/N W ey - 9.9
T = T,-T, rH,ande-wD. W ~Wp . 9.9)

This leads to the following expression for the ambiguity function:

o¢",wp) = | [~ ?(t—’?”) B (t+‘7”) el dt|?
(9.10)

_ o [ “ﬂ oz _.r//_te joct] z* 1./: ngt 2
[" [fmf(t ) - E-T -9l B D) o

The infinite limits on the integral have been carried along but may not be applicable,
depending on the nature of the transmitted waveform (see the discussion leading up
to (2.42)). We see that the time-frequency correlation function in this case consists of

the time-frequency correlation of the reference signal, and an error term:

I _ [* % N mx A
d("wp) = [~ E (-2 B+ D) P e
(9.11)
I _:_’ ~* 1:_” jmét
[T Re-D B ™ e

Equations (9.10) and (9.11) express the ambiguity function and time-frequency

correlation function from the point of view of the receiver, that is, based on fmf. An

alternative formulation, in terms of the transmitted signal f, may be more useful for

system design and analysis purposes. This results in the expression:
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- . .. o
8("ap) = | [T He-DF @D + e ™ arp 9.12)

bGop) = [T He-2) FasD) e dt

, P (9.13)
[T Re-D) Be D) o a

We observe that the time-frequency correlation function in (9.11) and in (9.13)

consists of the superposition of two separate functions. Concentrating on the

formulation (9.13), ¢(z’ ’,wl/)/) is the sum of the ordinary time-frequency correlation

of the transmitted signal, (bu(t/ ! ,wll)l), and an error term, (be(‘r/ ! ,wg). Both these terms

incorporate the errors in epoch and in frequency, 7, and w_. Thus, (9.13) can be

written
" " "
d(t"0p) = by("wp) + b (t"0p). o1
The ambiguity function (9.12) then becomes

" N2
|¢u(T//:wD) + d)e(T/I:wD)'

6(1:”,&),/;)

I}

(9.15)

8,(x",0p) + 8(z",0p) + 2Re ¢, b,

where
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AT < i
8,(+wp) = | [ He-2) E'(t+5) &P

- - o/
0o = | [ Bt-3) Et+ D) &

and we have the bounds

Gu(‘c”,m,/)/) + Be(r”,w,/)/) -2,/6,0, < 0(x”,wp)
(9.16)

< 8,(t",0p) + 0,(c",0p) + 2,88,

Clearly, the effect of an error in complex envelope is somewhat unpredictable,
and this type of error needs further study. For instance, the nature of the transmitted
waveform can significantly influence the magnitude of this type of error.

9.3 Discussion
What preliminary conclusions can be drawn from the development in Sec. 9.2?

A general form of the ambiguity function for non-cooperative bistatic radar is

given in (9.12), referenced to the transmitted signal f and incorporating errors in the

reference waveform used by the receiver, f

f . The simplest case arises when the

difference between f_ and f is solely due to a timing error t_ and an error in carrier |
frequency, w_. In that case, the term f;(t+'?”) within the bracket is zero, and 8(z",wp)

has the same shape as the ordinary ambiguity function for the signal which is

radiated at the transmitter. However, the function suffers erroneous displacements
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in the t and w, directions by amounts t, and wp_, respectively. In (9.12) this is

evidenced by the fact that the variables are " and wp, (as defined in (9.9)), instead of

v/ and m,’,. The manner in which these displacements in T and o, affect the bistatic

ambiguity function (expressed as a function of Rg and V,) will, of course, depend on

the bistatic geometry and can be analyzed using the principle of Chapter 4.

If the discrepancy between f_ and f cannot be expressed in terms of errors in

timing and/or frequency, we have an "error in the complex envelope". This case is

much more complicated. The time-frequency correlation function (9.13) now has an

extra term due to the error component 'f", which enters in a nonlinear manner into the

ambiguity function.

Generally speakin& this case will give rise to a spreading of the ambiguity
function. A detailed analysis of this case will have to consider specific transmitted
waveforms, specific bistatic configurations, as well as the likelihood of various
amounts of error in the complex envelope for a given type of transmitted signal.

Finally, if in addition to an error in the complex envelope there also are timing
and frequency errors, then the ambiguity function with distortions just described is

subjected also to the displacements in the T and oy directions, as in the first case.
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10 SUMMARY AND CONCLUSIONS

This investigation was primarily devoted to the ambiguity function analysis for

bistatic radar systems. The major contributions of this effort are outlined below.

1.

In most of the existing literature, ambiguity function is simply defined without
providing any relationship with fundamental radar signal processing problems.
We showed the manner in which the ambiguity function arises naturally when
solving the radar signal detection problem and the associated parameter
estimation problem. The derivation of ambiguity function based on the basic
principles of detection and estimation theory was presented.

The manner in which the bistatic geometry affects the ambiguity function was
derived. It was shown that delay and Doppler are no longer the appropriate
arguments for plotting the ambiguity function due to the geometry and the
nonlinear relationships. Illustrative examples showed the unexpected
behavior of the ambiguity function plots.

For sampled radar signals, expressions for both continuous-time continuous-
frequency and discrete-time discrete-frequency ambiguity functions were
derived. Relationships between them were established. It was shown that a
sampling rate of greater than or equal to twice the Nyquist rate is needed to
avoid aliasing.

A signal model that incorporates various uncertainties in the reference signal

at the receiver for the non-cooperative bistatic radar was developed.
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APPENDIX A

TWO PROPERTIES OF THE CORRELATION FUNCTION

In this appendix, two properties of the time-frequency correlation function
needed for the analysis of the main text, are derived.

Recall that

+00

4’&3‘(1,1') = f g1(t) fl‘(t—‘r) e Prftge

Property 1 (convolution of two time signals)

If ¥t) = F,()+E,(t) and §®) = §,(O)*E,(®, where the asterisk denotes convolution,

then

0 ftD = [ 0y 2 (0D by 3 (r-AD di. (A1)

Proof

The left hand side of (A.1) can be written as
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byt = f f g,(x) g,(t-x)dx f ;o) £ t-1-y)dy; e Prdt

) f f f g, £ g¢t-x ft-1t-y) e P dxdydt.
The right hand side of (A.1) is,

f d’gl,f‘(lsﬁ d)ﬁz:?z(‘:_l’ﬂ di = f {f gl(u) ‘t'-lt(u_l) e 2rfu du]

{ [ &0 Bv-c+3) e'ﬁ"f'dv} da
= [[[ 8,0 E@-2) g, ;r-t+1) e 2™ dudvdd.

In the above expression, let t=u+v so that v=t-u. The above triple integral then

becomes

[[] 8@ E(4-3) gt-w E¢t-u-v+4) e ¥ dudtda.

Now let x=u and y=u-A. The triple integral then reduces to

f f f g,® ?1‘()') g,(t-x) ?2‘(t‘f -y) e ¥ dxdydt

which is the same as the left hand side of the expression found previously.
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Property 2 (product of two time signals

If ¥ = ) £, and §© = §,() &,®), then

(0D = [ b1 (e0) & 309 dx (A2)
Proof
By definition,
1m0 = [ B ) Ht-v) o) e ¥ gt
This represents the left hand side of (A.2). Let’s now expand the expression on the

right hand side. We obtain

[ 4560 dyp(ef-x dx = [ [ a®Eeo e ¥ dt,

-® —o00

[ &) B0 e ¥ d, dx
= [[] 8. H -0 & 560 o N g go dx.

However,

+00
[ e ax = (et

Therefore, the right hand side of (A.2) becomes
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+00

[] 86 56,0 8,0) Bt-0) e ™ 8,1 &, ¢,

+00

= f §1(t1) éz(tl) fl‘(tl -1) fz'(tl_,r) e*ﬂnﬁl dtl

which is the same as the expression found for the left hand side of (A.2).
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APPENDIX B

TIME AND FREQUENCY EXTENT OF
THE CORRELATION FUNCTION

By definition, f(t) is time limited to the interval [0, T,] where T, = (N-1T is
the time duration of f(t) and N equals the number of time samples uniformly spaced

by an interval T over the signal duration. Assume that fe(t) has a spectrum that is

approximately bandlimited to the frequency interval [-B, B] where B is defined to be

the signal bandwidth as shown in Fig. B-1. To avoid aliasing of the frequency

spectrum, the sampling rate for £(t) should be greaterA than or equal to the Nyquist

rate. Since T denotes the sampling intervai, the Nyquist principle requires that
% > 2B.
We now consider sampling in frequency the spectrum of £(t). Uniformly
sampling in frequency with a sampling interval equal to A Hertz causes £t to be

replicated in time every % seconds. To avoid aliasing in time, it is necessary that

1
22Ty = N-DT+e

where € is a small positive constant. Equivalently,
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e (D)

Spectrum of ?c (t)

Fig. B-1 Sketch of f(t) and its spectrum.
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— 2> NT.

Recall that the continuous-time continuous-frequency autocorrelation function

of £(t) is given by

66D = [ g0 - e® " d

where
g0 = Fa-t) ”™
From Schwartz’s inequality,

|4z (.0 < f FEOINAGOIK:

B A EMRHCUIR

Sketches of |f(t-t)| and |f,(t-7)| are shown in Fig. B-2. .By inspection of Fig. B-2, the
integrand in the bound on |¢(t,f)| is nonzero for all t only when

T, Tystst,+T,
Note that this is a time interval of duration 2T, centered at 7, Because of the time-

limited duration of ?.(t)' it is seen that ¢ (r,f) is also time limited with a duration

equal to twice that of ?e(t). In addition, Schwartz’s inequality reveals that ¢;.(1:,t) has
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Fig. B-2 Sketches of |f(t-7)| and |E,(t-7)]|.




its maximum value when T =1, and f = f,.

Having determined the duration of ¢, (,f) along the t axis, we now examine

its extent along the frequency axis. It is readily shown that ¢z (v.) can also be

expressed as

oD = [ GGv) B(v-D] e dv

where E_[jv] is the Fourier transform of f,(t) and G,[jv] is the Fourier transform of g(t)
given by

G jv] = Efi(v-£)] e ¥

From Schwartz’s inequality,

+00

¢ (D] < [ 1GGv1l RTGv-DI| dv

+00

= [ RGO [BHG-DI] dv .

Sketches of |F [j(v—£)]| and |E[j(v-D]| are shown in Fig. B-3.
By inspection of Fig. B-3, the integrand in the bound on ]¢,‘(r,t)| is nonzero

for all v only when
f-2B<f<f, +2B.

Notice that this is a frequency interval of duration 4B centered at f.. Because the
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Fig. B-3 Sketches of |F [j(v-f)]| and |F [j(v-D]|.
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spectrum of fe(t) is confined to the interval [-B,B], it is seen that ¢, (<,f) is confined

to a frequency interval twice as large. As mentioned previously, Schwartz’s inequality

shows clearly that ¢, (t,f) has its maximum value when 7 = 7, and f = f..
In summary, ¢, (<,f) is centered at (z_f) and is limited both in time, with a
duration equal to twice that of f (t), and in frequency, with a frequency extent equal

to twice that of the spectrum of f (t).
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